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ABSTRACT: Predictive modeling is promising as an
inexpensive tool to assess water quality. We developed
geostatistical predictive models of microbial water quality
that empirically modeled spatiotemporal autocorrelation in
measured fecal coliform (FC) bacteria concentrations to
improve prediction. We compared five geostatistical models
featuring different autocorrelation structures, fit to 676
observations from 19 locations in North Carolina’s Jordan
Lake watershed using meteorological and land cover predictor
variables. Though stream distance metrics (with and without
flow-weighting) failed to improve prediction over the
Euclidean distance metric, incorporating temporal autocorre-
lation substantially improved prediction over the space-only
models. We predicted FC throughout the stream network daily for one year, designating locations “impaired”, “unimpaired”, or
“unassessed” if the probability of exceeding the state standard was ≥90%, ≤10%, or >10% but <90%, respectively. We could
assign impairment status to more of the stream network on days any FC were measured, suggesting frequent sample-based
monitoring remains necessary, though implementing spatiotemporal predictive models may reduce the number of concurrent
sampling locations required to adequately assess water quality. Together, these results suggest that prioritizing sampling at
different times and conditions using geographically sparse monitoring networks is adequate to build robust and informative
geostatistical models of water quality impairment.

■ INTRODUCTION
Fecal contamination introduces pathogens to water bodies that
can impact human health upon contact or ingestion, with
outcomes including gastrointestinal, skin, and respiratory
illness.1,2 Even limited contact with impacted water bodies
has been associated with adverse health outcomes.3 It is not
feasible to directly measure the numerous fecal-source
pathogens that may be present in aquatic environments, so
traditional water quality monitoring relies on the enumeration
of fecal indicator bacteria (FIB) such as fecal coliform (FC)
bacteria, Escherichia coli, or Enterococcus spp. Health risks
associated with contacting waters impacted by fecal pollution,
as indicated by the presence of FIB, are well documented but
may vary with the source of fecal pollution.4−8

Despite efforts to mitigate fecal pollution from point sources,
pathogen contamination as measured by FIB remains the
leading cause of impairment for United States water bodies
reported under Section 303 (d) of the Clean Water Act.9,10

The dramatic increase in FIB concentration routinely observed
during and after storm events, as well as associations with land
use patterns and geology, suggests that nonpoint source (NPS)

fecal pollution is a major contributor to microbial water quality
impairment.11−16 Traditional monitoring strategies, which rely
on infrequent grab sampling, cannot capture the rapid changes
in water quality that arise under systems dominated by NPS
pollution.16−19 Responding to these limitations, predictive
statistical modeling has been suggested as an inexpensive tool
to supplement sample-based monitoring.20−22

By characterizing the relationships between FIB and other
environmental factors, predictive models can be used to
estimate FIB concentrations at unmonitored locations and
times. Applications of predictive modeling include forecasting,
nowcasting, expanding the coverage of routine monitoring, and
investigating the patterns and determinants of contamination
to inform management efforts.21,23−25 A common approach is
simple empirical modeling, in which the association between
FIB and a set of comeasured predictors is estimated. These
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associations may be used to predict FIB from the values of the
predictors alone.
Predictors may be drawn both from observations of water

bodies and from other environmental conditions mechanisti-
cally linked with FIB loading and survival. The nature of the
data available for each predictor affects the predictive scope of
the model. Water quality characteristics are widely and
effectively used to predict FIB at unobserved times for specific
locations, such as particular beaches.23,26−28 However, these
variables typically require active data collection and physical
access to the water body, limiting the scope of FIB prediction
to the discrete locations and times that the predictors can be
measured. Conversely, predictors with spatially or temporally
continuous data coverage, such as those derived from
meteorological and remote sensing (e.g., land use/land cover
(LULC)) sources, can enable FIB prediction throughout the
study domain.29

Spatiotemporal geostatistics provides a complementary
approach that makes use of the spatial and temporal
autocorrelation present in observed FIB concentrations to
interpolate to unobserved locations and times.25,30 Correlation
between individual observations is liable to arise due to the
structure of typical FIB monitoring, which entails repeatedly
sampling hydrologically related locations. In geostatistics, a

covariance model is estimated from the data to describe the
decay in FIB autocorrelation over space and time, while simple
empirical models typically treat each observation as independ-
ent. A significant advantage of geostatistics lies in the potential
to directly consider spatiotemporal autocorrelation, which
shifts correlated observations from a liability, capable of
introducing bias, to a source of additional information for
improving predictions.31

The geostatistical approach permits one to incorporate
spatiotemporal correlation into a wide range of predictive
modeling techniques by centering the data about an offset and
modeling the residual covariance. The offset may be as simple
as the mean of the data or predictions from simple empirical
models, but several recent studies illustrate the flexibility of the
approach by integrating spatiotemporal geostatistics and
nonlinear land use regression (LUR) models to improve
prediction of several water and air quality characteristics.32−34

The geostatistical framework also provides a convenient means
of incorporating physically meaningful processes into pre-
diction through the choice of distance metric used in spatial
covariance calculations. The ongoing development of permis-
sible stream distance metrics with various flow-weighting
schemes holds particular relevance for water quality
prediction.30,35−39

Figure 1. Input variable distributions (frequency histograms), sampling locations (diamonds), stream network (blue polyline), and land cover
classification (colored raster cells) in the Jordan Lake near-upstream watershed in central North Carolina. Sample means (vertical dot-dashed lines)
and standard deviations (horizontal dotted lines) are indicated for each input variable, calculated from 676 observations; note the approximate log-
normal distribution of fecal coliform (FC) concentration.
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In this study, we develop geostatistical models to expand the
scope of FIB monitoring in a small watershed beyond discrete
sample collection to assess microbial water quality throughout
the stream network. Prediction at unmonitored locations and
times is accomplished using readily available meteorological
and LULC predictors. We compare the effects of different
covariance model structures on predictive performance,
including choice of distance metric, use of flow-weighting,
and consideration of temporal autocorrelation. To demon-
strate opportunities for enhancing monitoring and informing
management, we map daily FIB concentrations and probabil-
istically identify locations with impaired water quality. Finally,
we explore implications for setting efficient sampling priorities
to support comprehensive monitoring of stream networks.

■ METHODS
Study Area. The B. Jordan Everett Dam and Lake was

completed in 1982 to provide flood control and water supply
in the Cape Fear River basin.40 The Jordan Lake watershed
spans ten counties in central North Carolina and serves as a
water supply to eight municipal authorities in Chatham,
Durham, Orange, and Wake counties, with a total allocation of
63 megagallons per day.41 We studied the near-upstream
Jordan Lake watershed (Figure 1), which includes portions of
the Research Triangle Region and is characterized by rapid yet
low-density land development at a rate exceeding population
growth.42

Water Quality Assessment. Samples were collected
biweekly between April 2010 and March 2011 for a total of
301 samples from 15 locations. We collected an additional 135
samples during storm events, wherein each site was sampled
four times at predetermined intervals, as previously
described.11 FC were enumerated following standard mem-
brane filtration methods.43 We obtained 240 additional water
quality observations for the years 2010 and 2011 from the EPA
STORET online database for eight sites in the watershed, four
colocated with our study sites, for a total of 676 FC
observations (Figure 1).44

Meteorological Data. Records from the National Oceanic
and Atmospheric (NOAA) U.S. Climate Reference Network
(USCRN) Durham Station were used to assess the
meteorological conditions of the watershed during the study
time frame. Hourly records were obtained from the online
National Climatic Data Center (now the National Centers for
Environmental Information) for average surface temperature,
incident solar radiation, and precipitation (Figure 1).45 Recent
precipitation (“new rain”) was represented as the sum of
precipitation (in mm) in the 48 h preceding each sample;
similarly, precipitation further removed in time (“old rain”)
was assigned the sum of precipitation occurring between 48
and 168 h prior.25 We used the mean incident solar radiation
in the 4 h preceding each sampling time as the solar radiation
input variable.
Stream Network Processing. A flow-connected, digital

representation of the Jordan Lake watershed stream network
was constructed in ESRI ArcMap 10.2 (Environmental
Systems Research Institute, Redlands, CA, USA) using the
ArcHydro toolbox and a digital elevation model (DEM) at 20
ft resolution from NC Department of Transportation
(NCDOT).46 We defined the stream network as contiguous
cells with flow accumulation exceeding 30 000 to produce a
network of adequate complexity without crowding by trivial
tributaries. The stream network was converted to a Spatial

Stream Network (SSN) topological data model object with the
STARS toolbox in ArcGIS 10.2.47 Inconsistencies in flow
direction and stream convergence were manually corrected as
necessary to meet the SSN model requirements. Downstream
flow connection was represented using an additive step
function derived from the catchment area of each stream
segment (see Supporting Information).37,47,48

Upstream Watershed Delineation. We define the land
area contributing runoff to the stream network upstream of a
particular point on the network as the upstream watershed of
that point. Flow-connected points are permitted overlapping
upstream watersheds to capture the total land area contributing
to each location. We implemented the TopoToolbox-2.0.1-r set
of functions in MATLAB R2013a (The MathWorks, Inc.,
Natick, MA, USA) to delineate upstream watersheds for each
sampling site and prediction location from NCDOT DEMS
resampled at 30 m resolution.49

Land Cover Determination. LULC and percent imper-
vious surface rasters were obtained for the year 2011 from the
National Land Cover Database at 30 m resolution.50 The
percentage of watershed area comprising each land cover class
was calculated in MATLAB by dividing the number of cells of
each land cover class by the total number of cells in the
watershed. To account for the range of development
intensities, urbanizing land uses were represented as percent
impervious surface. The mean watershed percent impervious
surface was calculated by averaging the percent impervious
surface value across all the cells in the watershed (Figure 1).

Geostatistical Model Fitting. All statistical analyses were
performed in R 3.2.2 (R Foundation for Statistical Computing,
Vienna, Austria).51 Treating the natural logarithm transformed
FC concentration data as the response variable, we assume a
Gaussian geostatistical model:

β= = +
× × × × ×
s t Y s t A s t Z s tFCln( ( , )) ( , ) ( , ) ( , )

n n n p p n1 1 1 1 (1)

where the mean function (A(s,t)β) is a function of spatial
coordinate matrix (s) and time vector (t), with the matrix of
predictor variables (A(s,t)) and coefficients vector (β).52 The
error function (Z(s,t)) is also a function of s and t, comprising
the variance explained by spatiotemporal autocorrelation in the
data (the correlated error) and the variance unexplained by the
model (the nugget). We considered different definitions of the
error function (Z(s,t)) to obtain five geostatistical models for
comparison: an ordinary least-squares (OLS) model assuming
fully uncorrelated error, a Euclidean spatial (“space-only”)
model, a stream distance spatial (“stream distance”) model, a
flow-weighted stream distance spatial (“flow-weighted”)
model, and a Euclidean separable spatiotemporal (“space/
time”) model.
We fit three time-indifferent geostatistical models to the

observed FC concentrations using the function glmssn() from
the SSN package.37,48 By ignoring time, these models treat all
observations as if they were collected simultaneously and
reveal only the autocorrelation between locations that persists
across sampling times. The flow-weighted model features an
error function defined by a multistructure spatial covariance
model incorporating a flow-weighted exponential stream
distance model, an exponential Euclidean model, and a nugget.
The flow-weighted stream distance component accounts for
spatial autocorrelation between flow-connected locations with
distance measured along a stream network, estimated using a
moving average function that begins at some location and is
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nonzero only as it moves upstream.37 The Euclidean
component accounts for spatial autocorrelation in the
Euclidean distance between points, and the nugget accounts
for uncorrelated error and ensures a positive definite
covariance matrix. The three-structure spatial covariance
model (KZ(si,sj)) for the spatially correlated error function
(Z(s)) is defined as

σ σ σ= + + { = }K s s C s s C s s s s( , ) ( , ) ( , )Z i j f f i j e e i j n i j
2 2 2O (2)

where σf 2, σe2, and σn
2 are the partial sills for the flow-weighted

stream distance, Euclidean, and nugget components, respec-
tively. Each partial sill is the variance accounted for by the
corresponding error function component, such that the sum of
the partial sills equals the error function variance (σ2), which is
the total variance not explained by the mean function. The
correlation model for the flow-weighted stream distance
structure (Cf(si,sj)) is

π α
=

−
C s s

r s s

s
( , )

exp( 3 / ) if and are flow connected

0 if and s are not flow connectedf i j
i j f i j

i

,

j

lmooonooo
(3)

for stream distance (r) between the upstream point (si) and

downstream point (sj) and with flow weights π = Ω
Ωi j

s
s,

( )
( )

i

j

ikjjjj y{zzzz,
where Ω(·) is the additive function defined for the underlying
stream segments.30,37 Similarly,

α= −C s s d( , ) exp( 3 / )e i j e (4)

is the correlation model for the Euclidean structure, where d =
||si − sj||, the Euclidean distance metric.37,48 The range
parameters (αf and αe) are the distances between si and sj at
which the partial covariance between the two points decays to
approximately 5% of the partial sill corresponding to that
covariance structure.
We used maximum likelihood to estimate the parameters (β,

σf
2, σe2, σn2, αf, and αe) for the full model, which included all

the potential meteorological and LULC covariates in the
design matrix (A(s,t)).53 Predictors were standardized to
improve interpretability by subtracting the sample mean of
each covariate and dividing by the standard deviation.54 The
final model was obtained by removing covariates through a
backward elimination procedure to minimize the Akaike
Information Criterion (AIC), a function of the likelihood
penalized by the number of parameters estimated.55 The
remaining four models were fit using the same set of predictors
to aid comparison between models.
We fit a stream distance spatial model without flow-

weighting to permit spatial autocorrelation along the stream
network between points that are not flow connected. We
modify (2) to obtain

σ σ σ= + + { = }K s s C s s C s s s s( , ) ( , ) ( , )Z i j r r i j e e i j n i j
2 2 2O (5)

with stream distance partial sill (σr2) and stream distance
correlation model (Cr(si,sj)), which is equivalent to (4),
substituting the stream distance (r) for the Euclidean distance
(d). The stream distance covariance structure in (5) is dropped
to obtain the third spatial model with the Euclidean covariance
structure and nugget only. The stream distance and Euclidean
space-only models were fit using maximum likelihood

estimation implemented in the glmssn() function in the same
manner as the flow-weighted model.
To account for temporal autocorrelation in the error

function (Z(s,t)) from (1), we modify the error function in
(2) to obtain

σ
σ

=
+ { = = }

K s s t t C s s t t

s s t t

(( , ), ( , )) (( , ), ( , ))

,

Z i j i j e e i j i j

n i j i j

2

2O (6)

where Ce((si,sj),(ti,tj)) is the space/time separable exponential
correlation model

α α= −
|| − ||

−
| − |

C s s t t
s s t t

(( , ), ( , )) exp
3

exp
3

e i j i j
i j

e

i j

t

ikjjjjj y{zzzzz ikjjjjj y{zzzzz
(7)

with Euclidean spatial range parameter (αe) and temporal
range (αt).

56 The Euclidean space/time model parameters (β,
σn

2, σe2, αe, and αt) were obtained using maximum likelihood
estimation with profiling of the mean function parameters (β)
(Supporting Information).53 We did not consider temporal
covariance for models implementing stream distance metrics
due to limitations in the software package.48

We used leave-one-out cross validation (LOOCV) to
compare the predictive performance of the five models
(Supporting Information).32 Prediction accuracy was assessed
through the root-mean-square error (RMSE), and the
proportion of variance in the data explained by each model
was represented by the corrected prediction R2. Validation
statistics are calculated as

ϵ ϵ

ϵ ϵ ϵ ϵ
ϵ ϵ

= ̂ ̂

=
̂ ̂ − ̂ ̂

̂ ̂

n

R

RMSE 1
p
T

p

T
p
T

p
T

1/2

2 0 0

0 0

ikjjj y{zzz
(8)

for the vectors of LOOCV prediction residuals (ϵp̂ = Y − Ŷ)

and mean residuals ϵ ̂ = − ∑ =( )Yp
y

n
i
n

i1ikjjj y{zzz, where Y and Ŷ are

the vectors of observations and predictions, respectively.
Prediction at Unmonitored Locations and Times. We

predicted FC concentrations at 580 spatial locations arranged
equidistant along the stream network, including the 19 study
sampling sites.52 Predictions were made using the meteoro-
logical covariate values at 11:00 a.m. on each day of the study
period. The best performing geostatistical model by lowest
AIC was used to implement universal kriging, where the
prediction mean (yk̂) at location (sk) and time (tk) is

β βΣ Σ̂ = ̂ + − ̂−a Y Ay ( )k k
T

kh hh
1

(9)

for the vector of covariate values (ak), observation covariance
matrix (Σhh), and cross-covariance vector (Σkh).

52 The
prediction standard error is approximated as

σ σ Σ Σ Σ̂ = ̂ − −
kh hh khk

T2 1
(10)

where σ2̂ is the estimated model variance (Supporting
Information).

Assessing Watershed Impairment. We used an impair-
ment metric developed by Akita et al. to classify the proportion
of river miles on each study day predicted to be impaired,
unimpaired, and unassessed, based on the NC surface water
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quality standard for fecal coliform concentration of 200 cfu/
100 mL.31,39,57,58 The probability that each prediction point
exceeded the state standard was calculated using the kriging
prediction mean and standard error. Predictions with ≥0.9
probability of exceeding the state standard were categorized as
impaired; those with ≤0.1 probability of exceeding the
standard were categorized as unimpaired, and predictions
with probabilities of exceeding the standard >0.1 but <0.9 were
considered unassessed. Additionally, any points with >0.5
probability of exceeding the standard were considered more
likely than not to be impaired.

■ RESULTS AND DISCUSSION
Geostatistical Model Comparison. We fit an OLS

model, assuming uncorrelated error, and four geostatistical
models, distinguished by four different covariance models for
the error function, to FC concentration data. Table 1 compares
the performance of the five models, which were assessed
foremost by minimizing AIC, followed by RMSE and corrected
prediction R2. The OLS model and the three spatial models
performed similarly, with the OLS model faring slightly worse
by all three metrics and the Euclidean space-only model
performing slightly better by AIC. The three spatial models all
estimated the same proportion of spatial autocorrelation (3%
of the total variance) regardless of covariance model structure.
Incorporating temporal autocorrelation greatly improved
performance, substantially reducing AIC and RMSE and
allowing the space/time model to explain over 70% of the
variance in FC concentration. The mean function explained
the greatest variance portion (59%) in all four geostatistical
models; the OLS model also explained 59% of the total
variance. The correlated error component of the space/time
model accounted for 34% of the total variance, far exceeding
the 3% correlated error in the spatial models. RSME and R2

values for space/time model predictions at individual sampling
sites ranged from 0.61 to 1.48 ln(cfu)/100 mL and from 0.42
to 0.88, respectively (Table S4).

Effects of Stream Distance and Spatiotemporal
Autocorrelation: Error Function Models. Compared with
the OLS model assuming uncorrelated error, we observed a
strong improvement in model performance by considering
temporal autocorrelation but little improvement when
modeling the error function using only spatial autocorrelation
(Table 2). Incorporating a stream distance metric had no effect
on model performance, as Euclidean distance-based autocorre-
lation dominated the spatially correlated error. The longest
spatial range was associated with the flow-weighted stream
distance component, but the small partial sill suggests limited
impact of stream processes in driving FC concentrations,
further reflected in the negligible partial sill and reduced spatial
range of the stream distance model without flow-weighting.
Scale may be an important factor in the relative importance

of land and stream-based processes driving microbial
contamination; overland processes appear to dominate in-
stream processes in our small watershed, with sampling
locations at most 20 km apart. A recent study conducted on
a similarly small watershed likewise realized only minor
performance gains by modeling correlated error using a flow-
weighted stream distance metric, despite observing substantial
spatial autocorrelation.59 In contrast, other studies conducted
on whole river basins found the stream distance metric (with
various flow-weighting schemes) improved FIB estimation,
suggesting that in-stream effects may grow dominant at larger
scales.30,39 Larger spatial scales generally increase the number
of flow-connected sampling locations analyzed, which may lead
to performance gains from flow-weighted and stream distance
metrics.60 Several studies predicting other physiochemical
characteristics in streams obtained mixed results regarding the
relative performance of Euclidean versus (flow-weighted)
stream distance metrics.35,57,61−63 The appropriate distance
metric for modeling a particular water quality characteristic is
dependent on several interacting factors, including the
underlying processes driving the characteristic, the spatial
scale of the analysis, and the distribution of sampling locations
on the network.64

Table 1. Comparison of Model Performance and Proportion of Variance Explained by Geostatistical Model Components

proportion of variance explained

performance metrics error function

model covariance structure AIC
RMSEa
[ln(cfu)] R2a

mean
function

correlated error
proportion

unexplained variance (nugget)
proportion

OLS nugget 2214 1.21 0.59 0.59 0.41
space-only Euclidean + nugget 2187 1.19 0.61 0.59 0.03 0.38
stream
distance

stream distance + Euclidean + nugget 2191 1.19 0.61 0.59 0.03 0.38

flow-
weighted

flow-weighted stream distance +
Euclidean + nugget

2191 1.19 0.61 0.59 0.03 0.38

space/time Euclidean + nugget 2090 1.02 0.71 0.59 0.34 0.07
aCalculated from LOOCV prediction residuals.

Table 2. Error Function Parameter Estimates

unexplained variance (nugget) Euclidean covariance stream distance covariance

model partial sill [ln(cfu)2] partial sill [ln(cfu)2] spatial range [km] temporal range [days] partial sill [ln(cfu)2] spatial range [km]

OLS 1.48
space-only 1.36 0.112 8.8
stream distance 1.36 0.112 8.9 3.4 × 10−4 10.4
flow-weighted 1.36 0.098 9.3 0.012 22.7
space/time 0.24 1.23 12.8 2.1
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When time was included, the amount of uncorrelated error
was substantially decreased, though temporal autocorrelation
fully decayed in 2 days. In contrast to the spatial models, the
space/time model only estimates spatial autocorrelation for
observations made within this short temporal range, revealing
much stronger spatial patterns. The short temporal range,
increased spatial range, and large partial sill suggest that
localized microbial water quality is dependent on broader
environmental conditions that are subject to substantial
temporal variability. This is in keeping with previous research
at freshwater beaches, in which the day of sampling explained
the largest portion of FIB concentration variance between
multiple beaches.19 As such, the space/time model may be
useful for predicting water quality at unmonitored locations
when microbial concentrations are known elsewhere but is
limited for prediction at unmonitored times.
Effects of Land Cover and Meteorology: Mean

Function Models. We used the standardized predictor
variables to specify a full mean function for the flow-weighted
model (Table S3). The model with the lowest AIC following
backward elimination retained the following predictors:
percent forested upstream watershed area, percent agricultural
upstream watershed area, hourly average surface temperature,
precipitation in the preceding 2 days, precipitation in the
preceding 7 days (excluding the previous 2 days), and the
interaction between the two precipitation terms. The other
four models were fit to the same set of predictors. The
parameter estimates differed slightly between the five models
due to the influence of covariance structure (Table S2), but the
mean function for all five models accounted for the same
proportion of the total variance in the data (Table 1).
The direction of effect estimates (Figure 2) largely coincided

with our expectations. Increasing forest cover was protective
against microbial pollution,11,14,65,66 while antecedent rainfall
and warmer temperatures were associated with increased
microbial concentrations.11,13,16,23,25,67 Precipitation in the

preceding 2 days was associated with the largest increase in
FC concentration. Agricultural land use also exhibited a strong
positive relationship with FC, though it was the least precise
parameter estimate and previous studies report conflicting
effects of agriculture on FIB.11,66,68 This uncertainty could
relate to the geographic distribution of agricultural land on the
periphery of the study area: although many sites had
agricultural lands upstream, the watersheds generally transi-
tioned to other land uses nearer the sites.
Despite previous studies suggesting urbanization increases

microbial pollution, we did not observe a significant
association between increasing impervious surfaces and FC
concentration.11,14,66,69 Though urbanized land was common,
most watersheds had low impervious surface percentages,
reflecting low-intensity development with potentially diffuse
impacts on FC loading. We also failed to detect a significant
effect of solar radiation, which is known to inactivate microbes
in the environment.65,67,70−72 This may be due in part to the
spatial coarseness of the solar radiation measurement, for
which a single value measured at the NOAA Durham station
was used for all samples collected at a given time. Site-specific
topography and canopy cover could have substantially altered
the amount of solar radiation reaching the water. To address
these limitations, future applications may consider model-
based estimation of solar radiation, which has been used
effectively in mechanistic FIB models.28,73−75

The models presented here provide nuanced estimates of
the overall effects of precipitation by considering the
interaction between the two precipitation time frames. More
recent precipitation has a stronger effect on microbial
concentration than precipitation further removed in time, but
the negative interaction estimate suggests that past precip-
itation mitigates the impact of more recent precipitation
(Supporting Information). In systems where FC sources
accumulate on land before precipitation flushes contamination
into water bodies, it follows that past precipitation reduces the
stock of contamination available for subsequent rain to wash
into the stream. Precipitation intensity may also act as an
important driver of contamination in some systems, although it
did not appreciably affect the predictive performance of the
models presented in this paper (data not shown).
Although likely similar to many other mixed-use watersheds,

the associations between FC and the predictors considered in
this study should be generalized with caution. The study area
comprised a small watershed with limited LULC composition,
the effects of which were derived essentially from 19
observations for each LULC class (corresponding to the 19
sampling sites). As with the covariance components, scale
likely also affects the magnitude of predictor effects. The
pronounced sensitivity to precipitation might be tempered in
larger systems featuring spatially heterogeneous meteorological
conditions and a wider range of LULC characteristics.
Furthermore, we might expect associations with meteorology
to differ in systems dominated by sources with distinctive
loading dynamics, such as agricultural watersheds receiving
intermittent manure applications.

Space/Time Prediction of Microbial Water Quality.
The space/time geostatistical model was chosen to predict FC
concentrations at unmonitored locations and times. We
predicted universal kriging means and standard errors at each
prediction location at 11 a.m. for each of the 365 days between
April 1, 2010 and March 31, 2011 and calculated the
probability each prediction exceeded the NC standard of 200

Figure 2. Mean function GLS parameter estimates (points) and 95%
confidence intervals (bars) for the space/time model. Estimates are
for standardized (mean-centered, standard deviation-scaled) input
variables and represent the expected change in ln(FC) concentration
for a 1 standard deviation increase in the input variable with all other
variables held constant. Note that the three rain terms are related
through the interaction and cannot be interpreted in isolation
(Supporting Information). The intercept corresponds to the expected
ln(FC) concentration when all other predictors equal their respective
means.
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cfu/100 mL, from which a corresponding impairment status
was assigned. Figure 3 illustrates the spatial and temporal
trends in prediction mean, standard error, and impairment
status. Prediction error was lower on days FC were measured
(Figure 3B), but the short temporal range largely prevented
observational data from affecting predictions on consecutive
days (Figure 3E). Predictions outside the temporal range were
made entirely on the basis of the mean function, which can be
observed in the flattening of localized prediction means
between days with and without sample data (Figure 3A,D).
Mean FC concentrations exceeding the standard were

predicted on every day of the study; on 36 days (10% of
study period), more than 90% of stream miles had predicted
FC means above the standard. When impairment status was
assigned only to predictions with a high probability (≥90%) of
being above or below the state standard, some portion of the
watershed was considered impaired on 209 days (57%), while
unimpaired stream miles were predicted on 190 days (52%).
We observed no strong spatial patterns of impairment; rather,

impairment tended to be event driven, wherein large portions
of the watershed briefly became impaired before a relatively
rapid return to a generally unassessed state (Figure 3G). While
unimpairment likewise displayed no strong spatial pattern, the
temporal trends for unimpaired stream miles appeared more
seasonally driven, with notable background levels of unim-
paired stream miles during the winter months. Conversely,
relatively few stream miles were considered unimpaired during
months in which impairment events are more common, even
when no impairment event was ongoing; in such cases, the
majority of the watershed was considered unassessed.

Role of Predictive Models and Observational Data in
Assessing Watershed Impairment. Our space/time model
predicted that the Jordan Lake near-upstream watershed
frequently suffered from unsafe levels of microbial contami-
nation. However, despite 33% of all prediction means
exceeding the state standard, only 5% of predictions could
be confidently considered impaired, and only 6% were
confidently assessed as unimpaired. The other 89% of

Figure 3. Predicted spatial and temporal trends in microbial water quality. The top two rows (panels A−F) map the prediction means (panels A
and D), standard errors (panels B and E), and impairment status (panels C and F) for the whole study area on two consecutive days. The bottom
row (panel G) is the percentage of stream miles assigned each impairment status by day for the entire one-year study period, using the same scale as
the impairment status maps; the dashed line represents the percentage of stream miles more likely impaired than not. Water samples were collected
for the first day, which is reflected in the lower standard errors (panel B) compared with the following day (panel E), for which no sample data are
available. Areas assigned an impaired status on the first day (panel C) largely correspond to the areas of reduced standard error arising from the
observational data (panel B).
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predictions were unassessed, meaning we could not determine
whether FC concentrations fell above or below the NC
standard after accounting for prediction uncertainty. Access to
water sample data on the day of prediction was strongly
associated with an increased ability to assign impairment
status. Under a simple linear regression, any observation of FC
on a given day was associated with a 20% reduction (p <
0.001) in unassessed stream miles.
Because impairment appears largely event-driven, increases

in related meteorological variables, particularly precipitation,
produced elevated mean FC predictions. However, the high
temporal variability and low temporal autocorrelation range of
FC concentrations limited the ability of models alone to
predict impairment status with high confidence. Access to
recent monitoring data, however, reduced prediction un-
certainty sufficiently to confidently assign impairment status to
larger portions of the stream network. While a recent study in a
similar watershed observed clear spatial patterns in FIB, they
did not translate into the substantial reductions in prediction
error necessary to confidently assess impairment status.59 Their
samples were collected monthly, without intentional storm
sampling or considering temporal autocorrelation, which
suggests spatial relationships may impact background FIB
concentrations, only to be drowned out by events driving brief,
widespread impairment. This dynamic suggests frequent,
sample-based monitoring remains necessary to confidently
assess the safety and legal status of a water body. The
implementation of spatiotemporal predictive models may
reduce the number of concurrent sampling locations required
to adequately assess water quality throughout a stream
network, providing the means to increase sampling frequency
without increasing monitoring expenses.
In developing geostatistical models that consider the

spatiotemporal patterns and environmental drivers of microbial
water quality impairment, we identified clearly dominant
factors in each structural model component that together
largely explain observed FC concentrations and enable their
prediction. Precipitation dominated in the model component
that predicts FC directly, while temporal patterns dominated
spatial patterns in the component that contributes indirectly to
prediction by considering autocorrelation in the outcome.
Rather than orienting monitoring activities around specific
locations of heightened concern, the dominance of precip-
itation and temporal effects suggests a monitoring strategy that
targets sampling according to temporal criteria, employing
frequent sampling to better capture diverse meteorological
conditions driving impairment events. Because we constructed
the model using remotely sensed and continuously reported
predictors and we jointly estimated the different model
component parameters using likelihood-based methods, others
may apply the model to geographically sparse monitoring data
to assess microbial water quality impairment throughout
stream networks without the need for additional specialized
measurements or knowledge. Environmental managers, regu-
lators, and researchers can implement our model to inform
management decisions, target remediation efforts, and issue
timely warnings for the protection of public health.
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S.1 Profiling for Maximum Likelihood Estimation of Space/Time Model Parameters 

The log-likelihood function for the Gaussian geostatistical model with 𝑛 observations, 

mean function (𝑨𝜷), and an error function with parameters (𝜽) yielding the covariance matrix 

(𝛴(𝜽)), is given by 

 ln 𝐿(𝜷,𝜽; 𝒀) = −
𝑛
2 ln(2π) −

1
2 ln

|𝜮(𝜽)| −
1
2 (𝒀 − 𝑨𝜷)T𝜮−𝟏(𝜽)(𝒀 − 𝑨𝜷) (S1) 

where the response (𝒀) is the natural logarithm transformed fecal coliform concentrations.1 The 

values of 𝜷and𝜽 that maximize ln 𝐿(𝜷,𝜽;𝒀) are designated the maximum likelihood estimates 

(MLE), �̂�and�̂�. Numerical approximation is used to obtain the MLE, as closed-form solutions 

to the likelihood function generally do not exist. To reduce the number of parameters that must 

be approximated, we recognize that the MLE of 𝜷 for a given 𝜽 is the generalized least squares 

(GLS) estimate given by  

 �̂� = (𝑨𝑇𝑪−𝟏(𝜽)𝑨)−1𝑨𝑇𝑪−𝟏(𝜽)𝒀 (S2) 

for the correlation matrix 𝑪(𝜽)), where 𝜮(𝜽) = 𝜎2𝑪(𝜽) and �̂�2 is the GLS variance estimate 

given by �̂�2 = (𝒀 − 𝑨�̂�)T𝑪−𝟏(𝜽)(𝒀 − 𝑨�̂�)/𝑛. Numerical approximation is now required only 

to obtain MLE for 𝜽, accomplished by maximizing the profile log-likelihood function 

 ln 𝐿(𝜽;𝒀) = −
1
2 ln

|𝜎2𝑪(𝜽)| −
1
2 (𝒀 − 𝑨�̂�)T(�̂�𝟐𝑪(𝜽))−𝟏(𝒀 − 𝑨�̂�) (S3) 

using an iterative search algorithm. The algorithm is initialized with arbitrary starting values for 

𝜽 to calculate 𝑪(𝜽), given below in (S4). From 𝑪(𝜽) we obtain �̂� and 𝜎2, permitting the 

calculation of ln 𝐿(𝜽;𝒀) according to (S3). We approximate the MLE (�̂�) by repeating this 

process with different starting values for 𝜽 and selecting the set of values that maximize 

ln 𝐿(𝜽; 𝒀). 
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We used the optim() function in R to solve for the error function values that minimized 

− ln 𝐿(𝜽; 𝒀), where 𝜽 = [𝛼𝑠, 𝛼𝑡, 𝜏]𝑇, the spatial range, temporal range, and error partition 

parameters, respectively. The error partition parameter (𝜏) was used to apportion the GLS 

variance (�̂�2) between the Euclidean partial sill (𝜎𝑒2), which represents the correlated error 

proportion, and the nugget partial sill (𝜎𝑛2), representing the uncorrelated error proportion. The 

partial sill estimates were calculated as �̂�𝑛2 = 𝜎2 �̂�
1+�̂�

and�̂�𝑒2 = 𝜎2 (1 − �̂�
1+�̂�

) = �̂�2 − 𝜎𝑛2. The 

correlation matrix (𝑪) is given by 

 
𝑪 =

exp(−3𝐃/α𝑒)exp(−3𝐓/α𝑡) + τ𝐈
1 + τ  (S4) 

for spatial distance matrix (𝑫), temporal distance matrix (𝑻), the identity matrix (𝑰). 

S.2 Universal Kriging Prediction Error Approximation 

The universal kriging prediction variance (the square of the prediction error) is given by 

 𝜎𝑘2 =  �̂�2 − 𝜮𝒌𝒉𝜮𝒉𝒉
−𝟏𝜮𝒌𝒉

𝑇 + (𝒂𝒌 − 𝑨𝑇𝜮𝒉𝒉
−𝟏𝜮𝒌𝒉

𝑇 )𝑇(𝑨𝑇𝜮𝒉𝒉
−𝟏𝑨)(𝒂𝒌 − 𝑨𝑇𝜮𝒉𝒉

−𝟏𝜮𝒌𝒉
𝑇 ) (S5) 

for the GLS model variance estimate (�̂�2), the vector of prediction location covariate values 

(𝒂𝑘), observation covariance matrix (𝜮ℎℎ), and cross-covariance vector (𝜮𝑘ℎ).2 The term  

𝜎2 − 𝜮𝒌𝒉𝜮𝒉𝒉
−𝟏𝜮𝒌𝒉

𝑇  is the prediction variance for simple kriging, which is the best unbiased linear 

predictor when the mean at the prediction location (𝑠𝑘) is known. In universal kriging, the mean 

at 𝑠𝑘 is unknown and is obtained from the GLS estimate of the linear predictor as 𝒂𝑘
𝑇�̂�. The term 

(𝒂𝒌 − 𝑨𝑇𝜮𝒉𝒉
−𝟏𝜮𝒌𝒉

𝑇 )
𝑇
(𝑨𝑇𝜮𝒉𝒉

−𝟏𝑨)(𝒂𝒌 − 𝑨𝑇𝜮𝒉𝒉
−𝟏𝜮𝒌𝒉

𝑇 ) in the universal kriging variance penalizes the 

simple kriging variance for the uncertainty introduced by estimating �̂�. As such, the simple 

kriging variance 𝜎𝑘2 = 𝜎2 − 𝜮𝒌𝒉𝜮𝒉𝒉
−𝟏𝜮𝒌𝒉

𝑇  is the lower bound of, and may serve as a convenient 
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approximation for, the universal kriging variance. The square root of the kriging variance yields 

the prediction standard error. 

S.3 Calculation of Additive Function Values for Flow-Weighting 

An additive step function was used to represent downstream flow connection in the 

stream network, in which each stream segment is assigned an additive function value (AFV). We 

derived the AFVs from the non-overlapping catchment area of each stream segment, which 

serves as a proxy for the flow contributed by the segment. Under this construction, a flow weight 

is assigned to each downstream segment equal to the sum of flow-contributing upstream segment 

AFVs. STARS tools were used to delineate stream segment catchments from the DEM and 

calculate the catchment areas (𝐴𝑖). Where two stream segments 𝑖 and 𝑗 join, each is assigned a 

segment proportional influence (PI) weight (ω𝑖 =
𝐴𝑖

𝐴𝑖+𝐴𝑗
), such that the PIs at each junction sum 

to 1. Each segment is assigned an AFV corresponding to the product of the downstream segment 

PIs, a value between 0 and 1. Each sample location and estimation point is assigned the AFV of 

the underlying stream segment. 

S.4 Exploratory Analysis of Input Variables 

Table S1 presents summary statistics for the input variables used to fit geostatistical 

models of fecal coliform concentration. Input variables are divided into the following three 

categories: the response, measured directly in water samples; land cover predictors, derived from 

remote sensing and digital elevation model (DEM) delineated upstream watersheds; and 

meteorological predictors, derived from hourly measurements at a single weather station 

representing the entire study area. The geometric mean of all the fecal coliform concentrations 

was 219.1 cfu/100 mL, which slightly exceeds the North Carolina state water quality standard for 



 S6 

Type C surface waters, set at a fecal coliform geometric mean of 200 cfu/100 mL measured in at 

least 5 water samples. 

Table S1. Summary statistics for response and predictor variables. 

Variable 
(units) 

Mean Standard 
Deviation 

Median Minimum Maximum 

Response  
Fecal coliform concentration 
(cfu/100 mL) 1713.8 6216.2 166.9 1.2 97200 

Land cover predictors  
Impervious surface  
(% upstream watershed area) 12.8 10.2 9.7 0.4 40.6 

Water  
(% upstream watershed area) 0.39 0.32 0.25 0 0.95 

Forest  
(% upstream watershed area) 41.1 21.5 42.8 0 74.0 

Agriculture  
(% upstream watershed area) 5.4 5.2 2.5 0 19.3 

Meteorological predictors  
Solar radiation  
(W/m2) 212.1 215.5 140.5 9.0 859.5 

Surface temperature  
(°C) 18.23 10.3 19.0 -7.8 45.3 

0 – 2 day prior precipitation  
(mm) 12.3 25.0 0.25 0 98.4 

2 – 7 day prior precipitation  
(mm) 16.6 24.8 7.0 0 115.3 
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S.5 Visual Interpretation of the Error Function 

The error function in a geostatistical model describes the decay of covariance between 

realizations of the response variable associated with increasing distance between the locations of 

the realizations in space (and time, in space/time models). Plotting the modeled covariance 

against this distance, referred to as the spatial (or temporal) lag, allows for visualization of the 

relationship between covariance and distance modeled in the error function. Figure S1 presents 

error function graphs for two of the four models we considered, the Euclidean space-only model 

and the Euclidean space/time model, for which the spatial and temporal components are 

presented separately. The two other models, stream distance and flow-weighted stream distance, 

both combine a Euclidean distance component and a stream distance component, which prevents 

depiction of their respective error functions. Because the Euclidean distance component 

dominated in both the stream distance and flow-weighted stream distance models, in practice the 

error function for both would closely resemble that of the Euclidean space-only model. The 

ordinary least squares (OLS) model assumes all uncorrelated error and as such has no distance-

based relationship to be displayed. 
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Figure S1. Error function graphs of covariance distance-decay relationship for the space-only 
model (panel A), space/time model spatial component (panel B), and space/time model temporal 
component (panel C). The vertical axis is the modeled covariance in ln(FC) response, in units of 
ln(fc)2/100 mL. The nugget (uncorrelated error) partial sill 𝜎𝑛2 is represented in all three graphs 
as a dashed vertical line, the length of which corresponds to the maximum likelihood estimate of 
𝜎𝑛2. Similarly, the Euclidean distance partial sill 𝜎𝑒2 is represented as a vertical dotted line. The 
spatial range 𝛼𝑒, the Euclidean spatial lag value at which the spatial covariance is reduced to 5% 
of its initial value, is presented in panels A and B as dot-dashed lines intersecting the horizontal 
axis at the value of the maximum likelihood estimate of 𝛼𝑒. The temporal range 𝛼𝑡 is likewise 
displayed in panel C. 
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S.6 Mean Function Parameter Estimates 

The structure of the mean function was the same for each of the five models we fit, but 

the different error function for each model slightly affected the mean function parameter 

estimates. The mean functions for all five models had approximately the same explanatory 

capability, however, each accounting for 59% of the total variance in the data. Standardized 

(mean-centered, standard deviation-scaled) values of the input variables were used to enhance 

interpretability of the parameter estimates reported in Figure 2, but such linear transformations 

do not affect the overall fit or predictive performance of the model. Here we fit the models to the 

untransformed values of the input variables, which produces parameter estimates corresponding 

the expected change in ln(FC) concentration for a one-unit increase in the predictor value, when 

all other variables are held constant. (As with the standardized inputs, this interpretation does not 

hold for the precipitation terms, which are related through the interaction term; see next section 

in Supporting Information for explanation.) Table S2 presents the mean function parameter 

estimates for the ordinary least squares (OLS), Euclidean distance-only spatial (“space-only”), 

stream distance spatial (“stream distance”), flow-weighted stream distance spatial (“flow-

weighted”), and Euclidean separable spatiotemporal (“space/time”) models. Note the nearly 

equivalent parameter estimates for the space, stream, and flow-weighted models, which have 

very similar error functions due to the negligible partial sills for non-Euclidean components in 

the stream distance and flow-weighted models. 
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Table S2. Mean function parameter estimates for each of the five models considered. 

Predictor 
(units) Parameter 

OLS 
model 
estimate 

( 𝐒𝐄∗,
𝑷(> |𝐭|)) 

Space-
only 
model 
estimate 

( 𝐒𝐄,
𝑷(> |𝐭|)) 

Stream 
distance 
model 
estimate 

( 𝐒𝐄,
𝑷(> |𝐭|)) 

Flow-
weighted 
model 
estimate 

( 𝐒𝐄,
𝑷(> |𝐭|)) 

Space/time 
model 
estimate 

( 𝐒𝐄,
𝑷(> |𝐭|)) 

Intercept 
(ln(cfu)/100 
mL) 

β0 
4.71 
(0.15, 
<0.001) 

4.68 
(0.24, 
<0.001) 

4.68 
(0.24, 
<0.001) 

4.68 
(0.24, 
<0.001) 

4.76 
(0.19, 
<0.001) 

Forested 
(%) β1 

-0.033 
(0.0050, 
<0.001) 

-0.033 
(0.0087, 
<0.001) 

-0.033 
(0.0087, 
<0.001) 

-0.032  
(0.0088, 
<0.001) 

-0.030 
(0.0049, 
<0.001) 

Agricultural 
(%) β2 

0.074 
(0.021, 
<0.001) 

0.066 
(0.037, 
0.07) 

0.066 
(0.037, 
0.07) 

0.062 
(0.037, 0.1) 

0.066 
(0.021, 
<0.001) 

Surface 
temperature 
(°C) 

β3 
0.043 
(0.0047, 
<0.001) 

0.046 
(0.0046, 
<0.001) 

0.046 
(0.0046, 
<0.001) 

0.046 
(0.0046, 
<0.001) 

0.035 
(0.0070, 
<0.001) 

0 – 2 day 
prior 
precipitation 
(mm) 

β4 
0.072 
(0.0046, 
<0.001) 

0.072 
(0.0044, 
<0.001) 

0.072 
(0.0044, 
<0.001) 

0.072 
(0.0044, 
<0.001) 

0.067 
(0.0068, 
<0.001) 

2 – 7 day 
prior 
precipitation 
(mm) 

β5 
0.017 
(0.0024, 
<0.001) 

0.017 
(0.0023, 
<0.001) 

0.017 
(0.0023, 
<0.001) 

0.017 
(0.0023, 
<0.001) 

0.017 
(0.0035, 
<0.001) 

Precipitation 
interaction 
(mm2) 

β6 
-0.00059 
(0.000090, 
<0.001) 

-0.00060 
(0.000076, 
<0.001) 

-0.00060 
(0.000076, 
<0.001) 

-0.00060 
(0.000076, 
<0.001) 

-0.00052 
(0.00013, 
<0.001) 

*standard error of the parameter estimate 

 The reduced set of predictor variables used to compare models was selected from the 

candidate predictors described in Table S1. We fit the flow-weighted model using the full set of 

predictors excepting water cover, which accounted for less than 1% of the area in all upstream 

watersheds. Table S3 shows the mean function parameter estimates for the full set of predictors 

under the flow-weighted model, which yielded an AIC of 2194, an R2 value of 0.60, and an 

RSME of 1.19 log(cfu)/100 mL. The reduced predictor set was selected by backwards 

elimination using the criterion of minimizing AIC. 
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Table S3. Flow-weighted model mean function parameter estimates for the full set of predictors. 

Predictor  Units Parameter 
Estimate 

Standard 
Error 𝑷(> |𝐭|) 

Intercept  ln(cfu)
100mL

 4.32 0.65 < 0.001 

Impervious surface % 0.013 0.019 0.51 
Forested % -0.024 0.013 0.07 
Agricultural % 0.048 0.038 0.20 
Solar radiation  W/m2 -0.0002 0.0003 0.43 
Surface temperature  °C 0.048 0.0055 < 0.001 
0 – 2 day prior precipitation  mm 0.071 0.0044 < 0.001 
2 – 7 day prior precipitation  mm 0.017 0.0023 < 0.001 
Precipitation interaction  mm2 -0.0006 0.00008 < 0.001 

 
S.7 Derivation of Precipitation Interaction Effects 

Consider the general geostatistical model for a single observation 𝑦𝑖 with precipitation 

terms separated out: 

 𝑦𝑖 = 𝒂𝒊,𝟏−𝟑𝜷𝟏−𝟑 + 𝛽4𝑎𝑖,4 +𝛽5𝑎𝑖,5 + 𝛽6𝑎𝑖,4𝑎𝑖,5 + 𝑧𝑖  
(6) 

where β4and𝑎𝑖,4 correspond to 0 – 2 day prior precipitation (“new rain”) parameter estimate 

and observed value at point 𝑖, β5and𝑎𝑖,5 to 2 – 7 day prior precipitation (“old rain”) parameter 

estimate and observed value, and β6 is the parameter for their interaction (“rain interaction”). To 

calculate the total effect of new rain, we rearrange the model as  

 
𝑦𝑖 = 𝒂𝒊,𝟏−𝟑𝜷𝟏−𝟑 +𝛽4𝑎𝑖,4(1 +

𝛽6
𝛽4

𝑎𝑖,5) +𝛽5𝑎𝑖,5 + 𝑧𝑖 
(7) 

For positive new rain main effect 𝛽4 and negative rain interaction effect 𝛽6 (as estimated in all 

four of our models), the result is a diminished total effect of new rain for increasing values of old 

rain 𝑎𝑖,5. 
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S.8 Prediction at Individual Sampling Sites 

   We assessed the performance of all five models using leave-one-out cross validation, in 

which each observation is removed in turn and predicted from predictor values and the remaining 

observed concentrations. For each space/time point in the data set, LOOCV produces a pair of 

observed and predicted FC concentrations, the difference between which constitutes the 

prediction error. The mean of the squared prediction errors for a given dataset provides a useful 

metric by which to evaluate the accuracy of a model’s predictions; the positive root of this value 

yields the root mean squared error on the same scale as the original data. A related metric, the 

corrected prediction R2, uses the prediction error to account for the proportion of the total 

variance in the data that is explained by the model, corrected for the variance that is explained by 

substituting the grand mean of the data for each prediction. 

  With the goal of predicting FC throughout the spatiotemporal domain of our study area, 

we used all 676 FC observations to fit each of the five models considered. We evaluated 

predictive performance for each model primarily on the basis of RMSE for the full dataset, 

which indicates the average predictive performance across the study domain. However, the 

observations were collected from 19 distinct sampling sites between 24 and 79 times per site, and 

each LOOCV prediction was made for one site at a particular sampling time. Because the 

space/time model performed best in terms of both RSME and corrected prediction R2 for the full 

dataset, we further evaluated its performance for each sampling site considered individually. 

Figure S2 shows the correspondence between observed FC concentrations and those predicted by 

the space/time model for each sampling site, as well as for all sites considered collectively. 

Points falling above the dashed line in the center of each plot were overpredicted, points below 

the line were underpredicted, and increasing distance from the line indicates greater prediction 
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error. Prediction accuracy varied by site, with RSME ranging from 0.61 – 1.48 ln(cfu)/100 mL 

(Table S4), compared with an RSME of 1.02 ln(cfu)/100 mL for all sites together. Site-specific 

model performance was apparently unaffected by the number of observations at any given site. 

 

 
Figure S2. Comparison of predicted FC with observed concentrations at each sample site and for 
all sites in aggregate. Dashed line represents a 1:1 correspondence between observed and 
predicted FC concentration. 
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Table S4. Space/time model predictive performance under LOOCV at each sampling site. 

Site ID Latitude 
(°N) 

Longitude 
(°E) n RMSE 

[ln(cfu)/100 mL] 𝐑𝟐 

1 35.923399 -79.115062 30 1.41 0.58 
2 35.898559 -79.034915 30 0.64 0.85 
3 35.898700 -79.026300 55 1.05 0.69 
4 35.917767 -79.011277 30 0.96 0.63 
5 35.861150 -79.010000 78 0.94 0.54 
6 35.884740 -78.965630 79 0.97 0.76 
7 35.872430 -78.913220 55 0.61 0.78 
8 35.915389 -78.893528 27 1.20 0.64 
9 35.922639 -78.952417 30 0.75 0.77 

10 35.979550 -78.914850 26 1.00 0.84 
11 35.983020 -78.957210 31 0.90 0.79 
12 36.004367 -78.971167 29 1.12 0.74 
13 35.979600 -79.001622 30 1.35 0.77 
14 35.992217 -79.045687 28 0.81 0.88 
15 35.943026 -79.057701 22 1.09 0.55 
16 35.916700 -78.970400 24 1.08 0.71 
17 35.918700 -78.954800 24 1.33 0.60 
18 35.887020 -78.899430 24 1.48 0.42 
19 35.855500 -78.939700 24 0.84 0.72 

  

Considering predictions at individual sites across time further highlights the highly 

variable temporal trends in FC concentration. Figure S3 shows time series of daily kriging 

prediction means and 95% confidence intervals at three sampling sites, overlaid with observed 

FC concentrations and their corresponding LOOCV predictions. The displayed sites represent 

relatively strong (Figure S3(a) – Site 7), weak (Figure S3(b) – Site 13), and moderate (Figure 

S3(c) – Site 16) prediction performance by RMSE. The daily kriging prediction means do not 

necessarily match the LOOCV predictions for the same day because they incorporate the site-

specific observations excluded under LOOCV. Though the magnitudes may differ, the direction 

of concentration trends were similar for all three sites, reflecting the powerful influence of 

precipitation (which is the same for all sites at a given time) on predictions. The correspondence 
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in FC trend between sites held in the absence of observational data. On multiple occasions at 

each site, the model predicted FC concentrations exceeding the NC standard (5.3 ln(cfu)/100 

mL) without FC observations to draw on. While the prediction uncertainty in such instances 

generally increased to the point that impairment could not be diagnosed with high probability 

(illustrated by wider confidence bands in Figure S3), the ability to predict elevated FC without 

requiring additional samples demonstrates the potential for the model to inform watershed 

management.  
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Figure S3. Time series of FC observations (red circles), corresponding space/time model 
predictions (blue triangles), and daily FC prediction mean (blue line) and 95% confidence 
interval (gray shading) for selected sampling sites. The selected sites demonstrate high 
performance (a), low performance (b), and moderate performance (c) in terms of RMSE, relative 
to the other sites. 
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S.9 Animated Maps of Daily Watershed Predictions 

We compiled three time-lapsed animations mapping kriging prediction means, standard 

errors, and impairment status, respectively, for 11:00 a.m. on each of the 365 study days falling 

between April 1, 2010 and March 31, 2011. They may be viewed free of charge online at the 

following website: http://www.unc.edu/depts/case/BMElab/studies/DAH_FC_Jordan/, and 

individual animations may be accessed directly at the following addresses:  

• Kriging prediction means, 

http://www.unc.edu/depts/case/BMElab/studies/DAH_FC_Jordan/means.gif  

• Kriging prediction standard errors, 

http://www.unc.edu/depts/case/BMElab/studies/DAH_FC_Jordan/errors.gif  

• Predicted watershed impairment status, 

http://www.unc.edu/depts/case/BMElab/studies/DAH_FC_Jordan/impairment.gif 
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