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Abstract Climate-related extreme weather events can result in the loss of drinking water
access. We assessed the relative vulnerability of 3143 United States (U.S.) counties to loss of
drinking water access due to droughts, floods, and cyclones. Five vulnerability assessment
models from the literature were compared, each differing in the aggregation method used to
combine the three determinants of vulnerability (V) – exposure (E), sensitivity (S), and
adaptive capacity (AC). Exposure scores were calculated using historical occurrence data,
sensitivity scores were determined from the intrinsic resilience of the drinking water technol-
ogies, and adaptive capacity scores were calculated from nine socioeconomic indicators. Our
results showed that models V=E+S+AC and V=E+S–AC were the same, as were models V=
E×S×AC and V=E×S÷AC. Between these two model forms (form 1: V=E+S+AC and V=
E+S–AC; form 2: V=E×S×AC and V=E×S÷AC), scores from one model form could be used
to predict scores from the second model form, with R-squared values ranging from 0.61 to
0.82 depending on the extreme weather event type. A fifth model, V=(E–AC)×S was not
found to correlate with any of the other four models. We used V=E+S+AC as our reference
model as this resulted in a more uniform distribution of counties in each of the five intervals of
vulnerability. Comparing the vulnerability scores identified the counties with greatest vulner-
ability to losing access to drinking water due to floods, droughts, and cyclones. Our results can
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be used to inform evidence-based decisions such as allocation of resources and implementation
of adaptation strategies.

1 Introduction

Loss of access to safe drinking water can occur due to a variety of reasons. Examples of causes
of service interruption include planned maintenance, infrastructure failure (e.g., pipe bursts,
leaks, or obstructions), and accidental source water contamination (e.g., toxic chemical spills)
(San Jose Water Company 2014; Queensland Urban Utilities 2014; The City of Calgary 2014;
The New York Times 2014). Operators in charge of water systems should be aware of the
possibilities of unplanned infrastructure failures and accidental contamination, and therefore
should have maintenance practices, redundancy in processes, and risk management procedures
in place to ensure a rapid and appropriate response to these situations (Pollard 2008). Even
with these procedures in place, loss of access to drinking water can occur due to extreme
weather events such as droughts, floods and cyclones.

Droughts, floods, and cyclones (referred to as hurricanes in the Atlantic and typhoons in the
Northwest Pacific) can result in physical damage to drinking water infrastructure and/or
contamination and degradation of water quality. Specifically, droughts can cause both a
decrease in water supply as well as salinization and increased pollutant concentration due to
a reduction in both contaminant mobilization and dilution effect (IPCC 2008); floods and
cyclones can cause physical damage to infrastructure from floodwaters and high-velocity
winds, respectively, as well as contamination of water supplies from the introduction of debris,
silt, pollutants, and sewage (Islam et al. 2007; Kistemann et al. 2002; Mosley et al. 2004).
These extreme weather event types are projected to increase in intensity and/or frequency by
the Intergovernmental Panel on Climate Change (IPCC) as a result of global climate change
(IPCC 2013). Projections for the late (2081–2100) 21st century show a probability of 90–
100 % for an increase in frequency, intensity, or amount of heavy precipitation events over
most of the mid-latitude land masses and wet tropical regions, a 66–100 % probability for an
increase in intensity and/or duration of drought on a regional to global scale, and >50–100 %
probability for an increase in intense tropical cyclone activity in the Western North Pacific and
North Atlantic (IPCC 2013).

The vulnerability of populations, sectors, or places to climate change and climate variability
has been studied using vulnerability assessments as a tool to identify areas that are vulnerable
to climate-related effects and events, and to aid in making informed decisions such as the
allocation of resources to implement adaptation strategies (Preston et al. 2011). Vulnerability
assessment studies have been applied to various fields, including the estimation of coastal area
vulnerability to sea-level rise and storm surge flooding (Al-Jeneid et al. 2007; Demirkesen
et al. 2008; Kleinosky et al. 2006), and the impact of climate change on renewable ground-
water resources and general human welfare (Yusuf and Francisco 2010; Döll 2009). However,
vulnerability assessments have not been published in the peer-reviewed literature for the
impact of climate related hazards on drinking water access.

The most common method to assess vulnerability is the indicator approach to calculate
vulnerability index scores or rankings because of benefits such as (Gbetibouo et al. 2010): 1)
scalability – this approach can be applied at the household, county/district, and national level;
2) comparability – calculation of relative vulnerabilities allow for the identification of the most
vulnerable systems or places; 3) multi-dimensionality – use of several indicators allows for the
multiple dimensions of vulnerability to be captured; and 4) trend analysis – periodic
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calculation of vulnerability indices can identify trends with time. However, one problem with
such indicator-based approaches is the inconsistency in the approach used to aggregate
indicators into one composite score. For example, Table 1 lists five different approaches used
in the literature to calculate an overall vulnerability index. We could not find any study that
provided a justification for selecting one aggregation method over another and only two
studies (Cinner et al. 2012; Perch-Nielsen 2010) compared two different aggregation methods
and showed that they were highly correlated with each other.

There are therefore two important gaps in the current knowledge that need to be addressed
to advance the understanding of vulnerability to loss of access to safe drinking water: 1)
vulnerability assessments for the impact of extreme weather events on the loss of drinking
water access are not available in the literature; 2) there is no consistent method by which
indicators are aggregated in indicator-based approaches. Accordingly, the objectives of this
study were to: assess the relative vulnerability of the 3143 United States counties to losing
access to drinking water due to floods, droughts, and cyclones; and to compare the vulnera-
bility scores obtained by applying five previously-published vulnerability models that differ in
aggregation method. Our results are reported by mapping the vulnerability scores, which
allows the counties with the greatest vulnerability to losing access to drinking water to be
easily visualized.

2 Methods

2.1 Definition and determinants of vulnerability

Between the IPCC’s 4th and 5th Assessment Reports, the definition of vulnerability changed
to exclude exposure as a determinant of vulnerability. The IPCC’s 4th Assessment Report
defines vulnerability as Bthe degree to which a system is susceptible to, and unable to cope
with, adverse effects of climate change, including climate variability and extremes. Vulnera-
bility is a function of the character, magnitude, and rate of climate change and variation to
which a system is exposed, the sensitivity and adaptive capacity of that system^ (IPCC 2007).
However, in its 5th Assessment Report, vulnerability is re-defined as Bthe propensity or
predisposition to be adversely affected. Vulnerability encompasses a variety of concepts
including sensitivity or susceptibility to harm and lack of capacity to cope and adapt^ (IPCC

Table 1 Examples of climate change vulnerability assessment models used in the literature where sub-indices
for exposure (E), sensitivity (S), and adaptive capacity (AC) are first calculated prior to combining these sub-
indices into an overall vulnerability score

Model # Equation References

M1 V=E + S + AC (Borden et al. 2007; Perch-Nielsen 2010; Corobov et al. 2013)

M2 V=E + S − AC (Antwi-Agyei et al. 2012; Cinner et al. 2012; Silva and Lucio 2014)

M3 V=E × S × AC (Ferrier and Haque 2003)

M4 V=E × S ÷ AC (Cinner et al. 2012; Balica et al. 2009)

M5 V=(E − AC) × S (Hahn et al. 2009; Shah et al. 2013)

V vulnerability score or ranking, E exposure score or ranking, S sensitivity score or ranking, AC adaptive capacity
score or ranking
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2014). As the IPCC’s new definition of vulnerability was only released in 2013, most
studies in the literature calculate vulnerability using the earlier definition and include
exposure as a determinant. Accordingly, the vulnerability models used in this study
include the exposure term, although we also present in Section 3.4 results of bivariate
mapping where exposure is separated from a combined sensitivity and adaptive
capacity score.

2.2 Vulnerability assessment models

We considered only models in the literature that first determined sub-indices for exposure (E),
sensitivity (S), and adaptive capacity (AC), before combining these sub-indices into an overall
vulnerability score. In this way, we ensure that all three determinants are represented in the
vulnerability calculation. Table 1 shows the five models that meet these criteria and for which
we calculated and compared vulnerability scores and rankings. Additional models in the
literature which were not considered either combined all indicators together to determine
vulnerability, or only calculated two sub-indices (e.g., E sub-index and a combined S and AC
sub-index).

Each of the three determinants – E, S, and AC – were normalized to fall between 0.1
and 1. The minimum value of E, S, and AC was set to 0.1 to avoid final vulnerability
scores of 0 for models M3 – M5 (and to avoid division by zero for M4), which would
have prevented comparison between counties. The three determinants were weighted
equally, as there was no consistent method or justification in the literature for selecting
weighting schemes, with some studies using equal weighting (Antwi-Agyei et al. 2012;
Ferrier and Haque 2003; Hahn et al. 2009; Shah et al. 2013; Silva and Lucio 2014) and
others using unequal weighting (Iglesias et al. 2009; Perch-Nielsen 2010). It has been
suggested in several studies (Hahn et al. 2009; Sullivan and Meigh 2005) that expert
opinion, participatory consultations, and stakeholder discussion should be used to deter-
mine the weighting scheme.

2.3 Indicators of exposure, sensitivity, and adaptive capacity

Table 2 lists the indicators and data sources used to calculate exposure (E), sensitivity (S), and
adaptive capacity (AC). An extended version of the Methods including a full description
of the steps involved to clean the data and the assumptions made are provided in
Online Resource 1.

2.4 Calculation of county exposure (E), sensitivity (S), and adaptive capacity (AC)
scores

Historical data on the frequency of droughts, floods, and cyclones from 1950 to 2012 were
used as measures of hazard exposure and were obtained from the publically available National
Oceanic and Atmospheric Administration (NOAA) Storm Events Database (NOAA 2012).
County exposure (E) scores were calculated by normalizing the total number of events in a
county during 1950–2012 using the expression

County exposure Eð Þ score ¼ a þ X − Xminð Þ � b − að Þ
Xmax − Xminð Þ ; ð1Þ
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where X is the total number of events (i.e., floods or droughts or cyclones) for a specific
county, Xmin is the minimum number of all U.S. counties, Xmax is the maximum number of all
U.S. counties, and a and b define the range within which all E values fall. For floods and
droughts, a and b were set to 0.1 and 1, respectively. An exception was made for cyclones,
where a and b were set to 0 and 1, respectively. The lower limit, a, was set to 0 for cyclones to
reflect the fact that, by definition, inland U.S. counties are not exposed to cyclones. The lower
limit, a, was set to 0.1 for floods and droughts because while the historical frequency data may
show a count of zero for floods and droughts, all U.S. counties can experience floods and
droughts and therefore the lower limit of the range should be a non-zero value.

County sensitivity (S) scores for each hazard were calculated as the population-weighted
sum of the intrinsic resilience scores for the different water technology types as given by

County sensitivity Sð Þ score ¼
X3

i¼1

wiIRi; ð2Þ

where wi represents the proportion of the county population on each water technology type i,
and IRi represents the intrinsic resilience of water technology type i to the specific hazard.
Based on the intrinsic resilience scores defined in Online Resource Table 2, the county
sensitivity scores range from 0.1 to 0.7, although the theoretical range would be 0.1 to 1 if a
county existed where 100 % of the county population used an unimproved source
(IRunimproved=1). Results of a sensitivity analysis on the intrinsic resilience scores are also
available in Online Resource 5.

County adaptive capacity (AC) scores were calculated by first performing principal component
analysis (PCA) using JMP® software on the indicators to obtain synthetic variables (i.e.,
components) that are independent of one another (description of steps performed and PCA
results found in Online Resource 1). To ensure that a high vulnerability score corresponds to
greater vulnerability for all five models, the directionality of the indicators was adjusted when
needed (see Online Resource 1). Un-normalized AC scores were calculated by weighting each
component by the percentage of variance explained. Normalized AC scores were then calculated
using equation 1 so that all AC scores were in the range of 0.1–1.0.

3 Results and discussion

3.1 Exposure, sensitivity, and adaptive capacity scores for individual hazards

Exposure, sensitivity, and adaptive capacity scores were calculated for the 3143 counties of the
United States for floods, droughts, and cyclones separately. Figure 1 shows the results for floods,
with corresponding figures for droughts and cyclones presented in Figures A1 and A2 of Online
Resource 2. The maps are displayed in five intervals classified using the Jenks natural breaks
classification method in ArcGIS 10.1, where red and dark green correspond to counties with the
interval of highest and lowest exposure, respectively. Natural breaks was selected as the display
method instead of the quantile method because the quantile method can lead to two counties with
similar scores being placed in two different intervals due to the requirement of equal number of
counties per interval (e.g., natural breaks method may classify 10, 30, 20, 5, and 35 counties into
five intervals, while the quantile methodwould classify 20 counties into each of the five intervals).
For example, Fig. 1a and d illustrate the differences in flood exposure in the U.S. by the natural
breaks and quantile methods, respectively.
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Flood exposure (Fig. 1a) was highest in the northeast (particularly in Maine) and southwest
(southern California, Arizona) of the U.S., with counties in central and northern U.S. typically in
the lowest interval of exposure. Drought exposure (Figure A1a in Online Resource 2) was higher

Fig. 1 Scores for a exposure displayed by the natural Jenks method, b sensitivity, c adaptive capacity, and d
exposure displayed by the quantile method for floods
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in the southern U.S. with patches of drought also occurring in some of the counties in the eastern
U.S. states (Delaware, New Jersey, Connecticut, North and South Carolina). Cyclone exposure
(Figure A2a in Online Resource 2) was geographically limited to the southeast coastline of the
U.S. fromNorth Carolina to Louisiana. Flood, drought, and cyclone sensitivity maps (Fig. 1b and
Figures A1b and A2b in Online Resource 2) show that for all three, while sensitivity is widely
distributed geographically, counties belonging to the two highest intervals of sensitivity, as given
by the red and orange colours, are typically in the central U.S. Adaptive capacity, which reflects
the county’s ability to cope with extreme weather events is presented in Fig. 1c and shows that
counties with increased adaptive capacity (dark green) are located in the northern part of the U.S.,
while NewMexico, Louisiana,Mississippi, andAlabama primarily show counties in the lowest or
second lowest interval of adaptive capacity.

3.2 Comparison of vulnerability scores calculated using five aggregation methods

Vulnerability scores were calculated by aggregating the exposure, sensitivity, and adaptive
capacity scores according to the five models, M1-M5, listed in Table 1. In the case of cyclones,
when the exposure score was 0, the corresponding vulnerability scores for models M1, M2,
and M5 were set to the lowest possible vulnerability value (from counties with non-zero
exposure scores) to ensure that they were classified into the interval of lowest vulner-
ability. Comparison between models was performed by plotting the vulnerability
scores from one model against scores from a second model for all possible model
pairings (i.e., M1 vs M2, M1 vs M3, etc.). The data points were then fit to a linear or
polynomial expression to determine whether a relationship existed between the vul-
nerability scores calculated from the two models. Online Resource Table 5 presents
the model pairings, type of fitted regression equation used, and corresponding R-
squared values, for all possible combinations.

From the R-squared values, we see that models M1 (V=E+S+AC) and M2 (V=E+S-AC) are
highly correlated (i.e., knowing the M1 scores allows M2 scores to be calculated), as are models
M3 (V=E×S×AC) and M4 (V=E×S÷AC). This reduces the number of different aggregation
model types to three:M1,M3, andM5 – for simplicity, we choseM1 andM3 to represent theM1/
M2 and M3/M4 pairings. Of the remaining three models, R-squared values obtained from fitting
an equation between vulnerability scores of M1 and M3 ranged from 0.61 to 0.82 depending on
the extreme weather event type. These results are similar to the findings of Cinner et al. (2012)
who reported R=0.9 for models M2 and M4 in the vulnerability of coral reefs to climate change
induced stresses and the findings of Perch-Nielsen (2010) who found a high correlation (97-99 %
depending on the weighting scheme used) between the arithmetic mean (similar tomodelM1) and
geometric mean (similar to model M3) for the vulnerability of beach tourism to climate change.
Model M5, V=(E–AC)×S, was not correlated to any other model.

Between models M1 and M3, there is no justification for choosing one model over the other.
We found that the distribution of counties into the five intervals of vulnerability was more
uneven (percentage of counties per interval) using model M3. For example, while the
distribution of counties per interval from lowest to highest vulnerability for floods
using model M1 was 19, 31, 28, 18, and 4 %, the corresponding distribution using
model M3 was 46, 34, 16, 4, and 1 % from M3. Similar results were obtained for
droughts and cyclones. As model M1 represents four out of the five models, we
present and discuss the results for M1 in the remainder of the main text, with results
for M2-M5 available in Online Resource 4.

Climatic Change (2015) 133:665–679 673



3.3 Vulnerability calculated from model M1: V=E+S+AC

Figure 2a–c shows the vulnerability maps for floods, droughts, and cyclones calculated using
model M1. Flood vulnerability was highest for parts of California, Nevada, and New Mexico,
and for almost all counties in Arizona. Counties next to the Great Lakes (corresponding to

Fig. 2 Vulnerability to a floods, b droughts, and c cyclones calculated using model M1: V=E+S+AC; d
bivariate mapping flood vulnerability shown as a function of exposure and a combined sensitivity and adaptive
capacity score

674 Climatic Change (2015) 133:665–679



counties in the states of Wisconsin, Illinois, Indiana) were generally in the lowest or second-
lowest interval of vulnerability. For droughts, vulnerability was more uniformly distributed
across states; however, counties in Indiana, Ohio, and Pennsylvania were generally in the
lowest or second-lowest interval of vulnerability, while most states in central U.S. had several
counties in the highest or second highest interval. Cyclone vulnerability was dictated by its
exposure pattern and generally restricted to the east coast, with almost all counties in
Mississippi placing in the highest or second highest interval of vulnerability. No one compo-
nent (E, S, AC) of vulnerability was found to always have a greater impact on vulnerability
than the other components. Comparison of flood vulnerability in Fig. 2a with the E, S, and AC
components of flood from Fig. 1 shows that all components can have a dominant effect on
whether a county falls into the lowest or highest interval of vulnerability.

The vulnerability maps shown in Fig. 2a–c represent county-level vulnerability. Two
additional vulnerability metrics that consider county population and county land area can also
be calculated. Population-weighted vulnerability, which takes into account county population,
can be calculated by multiplying the county vulnerability score by the fraction of the U.S.
population living in that county. For example, results for population-weighted flood vulnera-
bility show that counties in the interval of highest vulnerability generally coincide with
counties where large populations reside (see Online Resource 6). An areal county vulnerability,
where the normalized exposure scores are calculated using total number of events divided by
county land area, can also be calculated (see Online Resource 7). Areal county vulnerability
takes into account the fact that the exposure scores are likely to be influenced by the land area
of the county, where larger counties would be expected to experience more event counts than
smaller counties. For example, results for flood vulnerability show that large counties in
California and Arizona which are in the highest interval of vulnerability when county land
area is not taken into account (Fig. 2a) move into intermediate intervals of vulnerability when
areal county vulnerability is estimated. However, in this study, (non-areal) county-level
vulnerability was chosen as the unit of interest because decisions regarding the types and
amount of investment are made at the county administrative level and therefore total event
counts and not counts per unit area are the metric of interest.

3.4 Separation of exposure from sensitivity and adaptive capacity

To address the IPCC’s revised definition of vulnerability, which in contrast to previous
definitions excludes exposure and focuses only on sensitivity and adaptive capacity, we use
bivariate mapping to visualize our results. Figure 2d presents the bivariate map for floods,
where we used a combined sensitivity and adaptive capacity index to represent the new
vulnerability definition and we used the form S+AC, which is analogous to model M1. Since
bivariate mapping requires n×n number of colours, where n is the number of intervals for each
variable, we re-classified by natural breaks the exposure and S+AC index into three intervals
each (best, medium, and worst), giving nine different colours. As seen in Fig. 2d, the bivariate
scheme identifies southern California and Arizona to have both the worst exposure and the
worst combined sensitivity and adaptive capacity for floods. Approximately half the counties
were found to be in the lowest interval of exposure but to have medium or worst combined
sensitivity and adaptive capacity. The advantages of bivariate mapping is that it allows
exposure to be separated from sensitivity and adaptive capacity and thus counties with
a high E and low S+AC can be differentiated from counties with a high E and high
S+AC. However, the division of E and S+AC into only three classes each – in order
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to minimize confusion from a 5×5 colour scheme – leads to loss of the details
provided by Figs. 1 and 2a–c.

In addition to separating out exposure from sensitivity and adaptive capacity, bivariate
mapping can also be used to visualize the vulnerability of a county in comparison to county
population. An example using floods is presented in Online Resource 8 and identifies counties
that are highly populated with low vulnerability and counties with low population and high
vulnerability. These results can be used by policy makers when making decisions on where to
focus climate change adaptation efforts.

3.5 Study limitations

We used the NOAA Storm Events Database to obtain historical frequency of floods, droughts, and
cyclones; however, the storm data disclaimer states that information from some of the sources may
be unverified by the NationalWeather Service (NOAA 2013). As such, it is possible that inaccurate
reporting, under-reporting, or over-reporting of events may occur. Reporting may also be influenced
by geographic location, as seen, for example, by the distinct geographic discontinuities across the
state border for drought between northern Oklahoma and southern Kansas (see Online Resource 2).
On the other hand, no discontinuity across the state border was observed for drought in eastern Utah
and western Colorado.Within each of the three hazards, no differentiation was made between event
types nor event severity. For example, flood event types of flash floods and snowmelt flooding may
differ in origin – the former may be due to heavy precipitation while the latter due to unseasonal
snowmelt – and are not reflected in the exposure scores. While the inclusion of severity or intensity
of an event would have been ideal, this data was not available for the events reported by the NOAA
Storm Events Database. For example, events that were classified as droughts had a D2 or higher
classification based on the U.S. Drought Monitor; however, it was not possible to distinguish if a
drought was a D2 or D3 event. A county that experienced a single exceptional (D4) drought would
therefore have a lower level of exposure than a county that experienced multiple severe (D2)
droughts.

Sensitivity scores were calculated based on the qualitative assessment of the intrinsic resilience
of drinking water systems to the three extreme weather event types and required several
assumptions: (i) we used a size cut-off for piped drinking water systems in order to classify these
systems as utility-managed or community-managed systems; (ii) it was assumed that the differ-
ence in resilience between low and medium resilience was the same as that between medium and
high resilience; and therefore the numerical values assigned to low, medium, and high resiliency
were equally spaced. Changes to the size cut-off used or the values assigned to intrinsic resilience,
particularly for high resilience, would alter the sensitivity scores. Adaptive capacity scores were
calculated using indicators for determinants of adaptive capacity and were limited by the data that
was available. Use of several indicators per determinant and validation of the selection of these
indicators would be desirable. Finally, neither the resilience scores nor the indicators
for adaptive capacity account for loss of access to drinking water due to damage to
energy infrastructure, which affects systems operations.

4 Conclusions

In this study, we assessed the relative vulnerability of all U.S. counties to losing access to
drinking water due to floods, droughts, and cyclones. We calculated and compared
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vulnerability scores using five models from the literature and found that four of the models
were correlated with each other, with R-squared values ranging from 0.61 – 1.0 depending on
the extreme weather event type. A fifth model, V=(E–AC)×S, did not correlate to any of the
other four models. This suggests that the aggregation method is important in determining
relative vulnerability and different models should be compared.

Comparison of a county’s relative exposure, sensitivity, adaptive capacity, and vulnerability
in Figs. 1 and 2 demonstrates that no one component is responsible for the final vulnerability
score in all counties, but rather any one component may dominate in some counties while a
different component dominates in other counties. The geographic distribution of vulnerability
differed depending on the extreme weather event type considered. Thus, while national climate
change adaptation policies may be proposed, region-specific and locally adapted policies are
also needed to address the differences in vulnerability.

The results describe the relative vulnerability of U.S. counties to loss of drinking water
access and allows for comparisons between counties, which can be used to inform decision
makers on allocation of resources and areas in which to focus efforts (e.g., increasing adaptive
capacity). Using the indicator approach to construct the vulnerability scores allows for updates
to indicators and the potential for future incorporation of additional indicators that measure
utility level adaptation, thus allowing individual utilities to calculate their vulnerability and
reflect on different adaptation options. The current relative vulnerability scores also can be
used as a reference baseline for: (1) comparison to future vulnerability, which would be
calculated using future projections for hazard exposure; and (2) evaluation of how specific
adaptation measures implemented by a county would affect its vulnerability.
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