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ABSTRACT: Fecal source tracking (FST) may be useful to assess
pathways of fecal contamination in domestic environments and to
estimate the impacts of water, sanitation, and hygiene (WASH)
interventions in low-income settings. We measured two nonspecific
and two human-associated fecal indicators in water, soil, and
surfaces before and after a shared latrine intervention from low-
income households in Maputo, Mozambique, participating in the
Maputo Sanitation (MapSan) trial. Up to a quarter of households
were impacted by human fecal contamination, but trends were
unaffected by improvements to shared sanitation facilities. The
intervention reduced Escherichia coli gene concentrations in soil but
did not impact culturable E. coli or the prevalence of human FST
markers in a difference-in-differences analysis. Using a novel
Bayesian hierarchical modeling approach to account for human marker diagnostic sensitivity and specificity, we revealed a high
amount of uncertainty associated with human FST measurements and intervention effect estimates. The field of microbial source
tracking would benefit from adding measures of diagnostic accuracy to better interpret findings, particularly when FST analyses
convey insufficient information for robust inference. With improved measures, FST could help identify dominant pathways of human
and animal fecal contamination in communities and guide the implementation of effective interventions to safeguard health.

KEYWORDS: diagnostic accuracy, water, sanitation, and hygiene, shared sanitation, microbial source tracking, fecal indicator, qPCR,
Bayesian hierarchical model

■ INTRODUCTION

Water, sanitation, and hygiene (WASH) interventions aim to
improve health by preventing exposure to enteric pathogens,
which are introduced to the environment in the feces of
infected human and animal hosts.1 Environmental pathways of
pathogen exposure include contaminated environmental
compartments like water, soil, and surfaces as well as hands,
flies, food, and fomites that have been in contact with
contaminated environments.2−4 Recent evaluations of a range
of WASH interventions found inconsistent and largely
negligible impacts on child diarrhea, growth, and enteric
infection.5−12 Notably, combined interventions did not provide
greater protection than their constituent interventions alone,
suggesting that key sources of pathogens and pathways of
exposure are inadequately addressed by conventional WASH
strategies.6,7,9,13−15

Characterizing fecal contamination in potential exposure
pathways may help explain why specific interventions do or do
not improve health by identifying which pathways the
intervention interrupts and which remain unaffected. Fecal
contamination is typically assessed by measuring fecal indicator
organisms, microbes abundant in feces used to infer the

presence of fecal contamination and therefore the likely
presence of enteric pathogens, which are challenging to
measure directly due to their diversity and low environmental
concentrations.15,16 Indicator organisms can also be used for
fecal source tracking (FST) by targeting microbes specific to
the feces of a particular host. Animals are important sources of
fecal contamination in both domestic and public environments,
but traditional efforts have focused on preventing exposure to
human feces; differentiating between human and various
animal feces could inform more appropriate intervention
approaches.4,17−22

Fecal indicator approaches have increasingly been applied to
domestic environments in low-income settings with high
burdens of enteric disease.3,15−18,23−26 Occurrence of non-
specific indicators like Escherichia coli is challenging to interpret
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in these settings due to elevated and highly variable ambient
concentrations, possibly from naturalized sources, which are
typically assessed in limited numbers of (cross-sectional)
observations from each environmental compartment.16,27−30

Other than ruminant FST markers, host-associated fecal
indicators have demonstrated poor diagnostic accuracy in
domestic settings.16,17,26,31,32 The use of multiple FST markers
has been proposed to help address the limited accuracy of
individual indicators.33,34 Several studies have calculated the
conditional probability of contamination by a specific fecal
source given the detection of one or more source-associated
indicators in one sample.31,34−36 Such analyses provide
valuable intuition about the uncertainty associated with
individual measurements, which can be particularly important
in decision-making contexts like beach closures. To our
knowledge, diagnostic performance has not been similarly
accounted for when FST has been used to infer patterns and
predictors of source-specific fecal contamination in domestic
environments, likely overstating the confidence of such
estimates.4,17,18,26,37−39

In this study, we analyze two nonspecific and two human-
associated fecal indicators in water, soil, and surfaces from low-
income households in Maputo, Mozambique, before and after
a shared sanitation intervention. We explore the conditional
probability of human fecal contamination in individual samples
under different prevalence and indicator detection scenarios
and develop a Bayesian hierarchical modeling approach that
accounts for the diagnostic accuracy of multiple markers to
estimate the prevalence of source-specific fecal contamination.
Finally, we implement these models using both human markers
to estimate intervention effects on the prevalence of human
fecal contamination in multiple exposure pathways.

■ MATERIALS AND METHODS
Study Setting and Intervention. We characterized fecal

contamination of households with children participating in the
Maputo Sanitation (MapSan) study (clinicaltrials.gov
NCT02362932), a prospective, controlled before and after
health impact trial of an urban, onsite sanitation intervention.40

The intervention was delivered to compounds (self-defined
clusters of households sharing outdoor space) in low-income
neighborhoods of Maputo, Mozambique, areas with high
burdens of enteric disease and predominantly onsite sanitation
infrastructure.41,42 Similar compounds that did not receive the
intervention were recruited to serve as control sites. At
baseline, both intervention and control compounds shared
sanitation facilities in poor condition.26 The existing shared
latrines in intervention compounds were replaced with pour-
flush latrines that discharged aqueous effluent to infiltration
pits and had sturdy, private superstructures. Intervention
latrines were constructed between 2015 and 2016 by the
nongovernmental organization (NGO) Water and Sanitation
for the Urban Poor (WSUP), which selected intervention sites
according to engineering and demand criteria (Table S1).40

Data Collection. The intervention impact on fecal
contamination was evaluated using a controlled before-and-
after (CBA) study design.5,43 Intervention compounds were
enrolled immediately before the new latrine was opened for
use, with a concurrent enrollment of control compounds
conducted at a similar frequency (Table S1). Follow-up visits
to each compound were conducted approximately 12 months
following baseline enrollment. We administered compound-,
household-, and child-level surveys during both baseline and

follow-up visits, as described elsewhere.5,42 Concurrent with
survey administration during May−August 2015, we oppor-
tunistically collected environmental samples at a subset of
MapSan study compounds from the shared outdoor space and
from each household with children participating in the health
study [see the Supporting Information (SI)]. During the 12
month follow-up phase in June−September 2016, we revisited
the original subset of compounds and collected environmental
samples from additional study compounds not sampled at
baseline, as time permitted.
Detailed descriptions of environmental sample collection,

processing, and analysis have been published previously.26

Briefly, we assessed fecal indicators in five environmental
compartments: compound source water, household stored
water, latrine entrance soil, household entrance soil, and
household food preparation surfaces (see the SI). Source water
and latrine soil were sampled once per compound on each
visit, while stored water, food preparation surfaces, and
household soil were collected from each household with
children enrolled in the health impacts study. Samples were
processed by membrane filtration, preceded by manual elution
for soil and swab samples, and the sample filters were analyzed
for microbial indicators of fecal contamination using both
culture- and molecular-based detection.25,26,44 We enumerated
culturable E. coli (cEC) from filters on modified mTEC broth
(Hi-Media, Mumbai, India) and immediately archived addi-
tional filters at −80 °C for molecular analysis.16,45 Archived
filters were analyzed by three locally validated real-time
polymerase chain reaction (qPCR) assays targeting fecal
microbe genes. The EC23S857 (EC23S) assay targets E. coli
and served as an indicator of nonspecific fecal contamination,
while HF183/BacR287 (HF183) and Mnif both target
microbes specific to human feces and served as indicators of
human-source fecal contamination.46−48 Limits of detection for
each assay were previously determined using receiver operating
characteristic (ROC) analysis to identify optimal quantification
cycle (Cq) cutoff values (see SI).26,49

DNA was isolated from soil and surface sample filters using
the DNeasy PowerSoil Kit (Qiagen, Hilden, Germany) and
from water sample filters with the DNA-EZ ST01 Kit
(GeneRite, North Brunswick, NJ), with a positive control
(PC) and negative extraction control (NEC) included in each
batch of up to 22 sample filters. PCs consisted of a clean filter
spiked with 2 × 108 copies of each composite DNA standard
(Table S4).26 Filters were treated with 3 μg salmon testes
DNA (MilliporeSigma, Burlington, MA) immediately before
extraction as a specimen processing control (SPC) to assess
PCR inhibition.50,51 We tested each extract with four qPCR
assays using a CFX96 Touch thermocycler (Bio-Rad, Hercules,
CA), three targeting fecal microbes and Sketa22 targeting the
salmon DNA SPC, with 10% of each sample type analyzed in
duplicate for all microbial targets.52 Each reaction consisted of
12.5 μL TaqMan Environmental Master Mix 2.0, 2.5 μL 10×
primers/probe mix, 5 μL nuclease-free water (NFW), and 5 μL
DNA template, for 25 μL total reaction volume. After an initial
10 min, 95 °C incubation period, cycling conditions specified
by the original developers were followed for each assay (Table
S3). Samples with Sketa22 quantification cycle (Cq) values > 3
above the mean Cq of extraction controls (NEC and PC) were
considered inhibited and diluted 1:5 for further analysis. Each
plate included three no-template controls (NTCs) and five-
point, 10-fold dilution series of three extracted PCs,
corresponding to triplicate reactions with 105−101 or 106−
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102 target gene copies (gc). Target concentrations were
estimated from calibration curves fit to the standard dilution
series using multilevel Bayesian regression with varying slopes
and intercepts by extraction batch and instrument run (see the
SI).53 Fecal indicator concentrations were log10 transformed
and expressed as log10 colony forming units (cfu) or gc per 100
mL water, 100 cm2 surface, or 1 dry gram soil.
Estimating Intervention Effects. We used a difference-

in-differences (DID) approach to estimate the effect of the
intervention on fecal indicator occurrence. DID enables
unbiased estimation of the treatment effect in the absence of
randomization, including when different samples of each group
are observed pre- and post-treatment, under the “parallel
trend” assumption that all unmeasured time-varying covariates
related to the outcome are constant across treatment groups
and that unmeasured covariates varying between treatment
groups are constant through time.43,54,55 Although we
estimated gene copy concentrations for all fecal indicators
assessed by qPCR, we treated the human markers as binary,
diagnostic tests of the presence or absence of human fecal
contamination due to their relatively low baseline detection
frequency (and limited availability of concentration data as a
result).26 By contrast, E. coli was detected in the large majority
of baseline samples by both culture and qPCR approaches;
treating such outcomes as presence/absence would discard a
great deal of information conveyed by the E. coli concentration
measurements, producing a binary outcome with very little
variation. Direct DID estimates for the mean concentration of
nonspecific indicators and the prevalence of human-associated
indicators were obtained using a bootstrap approach with 2000
samples. We calculated the mean concentration or prevalence
in each of the four design strata (pretreatment intervention
compounds, post-treatment intervention compounds, pretreat-
ment control compounds, and post-treatment controls) by
sample type, from which the DID was calculated directly (see
the SI). Bootstrap 95% compatibility intervals (CI) were
obtained as the 2.5 and 97.5 percentile values of the bootstrap
samples.56

We also conducted regression analyses incorporating
potential confounding variables to obtain conditional DID
estimates. We used the product-term representation of the
DID estimator, in which binary indicators of treatment group,
study phase, and their product (interaction) were included as
linear predictors. The coefficient on the product term provides
the conditional DID estimate.54,57 Separate models were fit for
each combination of fecal indicator and sample type using
Bayesian multilevel models with compound-varying intercepts.
Censored linear regression was used to estimate the
intervention impact on the log10 concentration of nonspecific
indicators and the effect of the intervention on human-
associated indicator prevalence was estimated using logistic
regression and the prevalence odds ratio (POR) as the
measure of effect.58,59 Models were fit with the package brms
in R version 4.0.2 using 1500 warmup and 1000 sampling
iterations on four chains (see the SI for prior distribu-
tions).58,60 Estimates of the intervention effect were
summarized by the mean and central 95% CI of the resulting
4000 posterior draws.
Adjusted models included variables for selected compound,

household, meteorological, and sample characteristics. Com-
pound population density, presence of domestic animals, and
asset-based household wealth scores were derived from
household and compound surveys administered during each

study phase.42,61 Previous-day mean temperature and 7-day
antecedent rainfall were drawn from daily summary records for
a local weather station. For stored water samples, we
considered whether the storage container was covered and if
the mouth was wide enough to admit hands. The surface
material was considered for food surface swabs, and for soil
samples, we accounted for sun exposure and visibly wet soil
surfaces. Covariate data sources and processing have been
described previously.26,42

Conditional Probability Analysis. Both HF183 and Mnif
were previously found to frequently misdiagnose human feces
in our study area.26 An indicator’s diagnostic accuracy is
described by its sensitivity (Se), the probability of detecting
the indicator when contamination is present, and specificity
(Sp), the probability of not detecting the indicator when
contamination is absent. The probability that a positive sample
is contaminated depends on the marker sensitivity and
specificity and the prevalence of human fecal contamination.
This marginal probability of contamination can be approxi-
mated as the frequency of indicator detection among all
samples to explore indicator reliability in a specific study.31 We
assessed the probability that human feces were present in an
environmental sample in which HF183 or Mnif was detected
using Bayes’ Theorem and the local sensitivity and specificity
of the two markers (see the SI).34−36 We calculated the
conditional probability of contamination for HF183 and Mnif
separately and for each combination of the two indicators by
sample type. The marginal probability of contamination was
approximated as the detection frequency of HF183 among all
samples of a given type.

Accounting for Diagnostic Accuracy. Fecal indicator
measurements are used as proxies for unobserved fecal
contamination to estimate its prevalence and associations of
interest, such as the effects of mitigation practices. This
approach is vulnerable to measurement error, illustrated by the
limited diagnostic accuracy of many host-associated fecal
indicators.16 Bias due to inaccurate diagnostic tests can be
mitigated by incorporating external information on the
sensitivity and specificity of the test.62 The expected detection
frequency, p, of a test with sensitivity Se and specificity Sp is
given by

π π= × + − −p Se (1 Sp)(1 ) (1)

for an underlying condition with prevalence π.62,63 We adapted
the approach of Gelman and Carpenter to estimate the
intervention effect on human fecal contamination prevalence
from observations of human-associated fecal indicators by
incorporating external information on indicator performance
within a Bayesian hierarchical framework.63 We included the
product-term representation of the DID estimator and other
covariates as linear predictors of the prevalence log-odds.
Assuming indicator detection in the ith of n samples, yi, was
Bernoulli distributed with probability pi, where pi was related
to the prevalence as shown in eq 1, the accuracy-adjusted
prevalence model was

γ

π π

π β β β β

∼

= × + − −

= + + + × +

y p

p

P T P T X

Bernoulli( )

Se (1 Sp)(1 )

logit( )

i i

i i i

i
P

i
T

i i i i
0 DID

(2)
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where β0 is the intercept; βP, βT, and βDID are the parameters
corresponding to indicators for study phase (P), treatment
group (T), and their product, respectively; and γ is a p × 1
vector of regression coefficients corresponding to p additional
covariates in the n × p matrix X.
We fit three models that differed by definition of Se and Sp.

In the simplest case (model 1), we assumed a perfectly
accurate test with Se = Sp = 1, thus p = π. The second model
(model 2) incorporated observations from the local validation
analysis by assuming

∼

∼

y n

y n

binomial( , Se)

binomial( , Sp)

Se Se

Sp Sp
(3)

for ySe positive results in nSe human fecal samples and ySp

negative results in nSp nonhuman fecal samples. Because our
validation sample set was small and performance estimates vary
widely between studies, we fit a third model (model 3)
featuring a meta-analysis of indicator sensitivity and specificity
(see the SI). We assumed that the log-odds of the sensitivity in
the kth study, Se[k], were normally distributed with mean μSe

and SD σSe, such that

μ σ

∼

∼
[ ] [ ] [ ]

[ ]

y nbinomial( , Se )

logit(Se ) normal( , )

k k k

k

Se Se

Se Se
(4)

with an equivalent structure for the specificity. We assigned k =
1 to our local validation study, using Se[1] and Sp[1] as the
values of Se and Sp in eq 2.26,63 This emphasized the local
performance data while allowing information from other
settings to influence the estimates through partial pooling,
with the extent of pooling learned from the data (expressed
through σSe and σSp).59

Modeling Latent Human Fecal Contamination. Fecal
contamination can be understood as a latent environmental
condition for which fecal indicators serve as imperfect
diagnostic tests.64,65 Information from multiple fecal indicators
may be utilized by modeling each as arising from the same
underlying contamination to potentially improve inference. We
extended the meta-analytic model (model 3) to include

observations of both HF183 and Mnif in the same samples
(model 4), with separate detection probabilities, pi

hf and pi
mn,

obtained from indicator-specific sensitivity and specificity
estimates applied to the same underlying prevalence, πi. As
in previous models, the DID estimator and other predictor
variables were included in a linear model on the log-odds of πi,
assuming that intervention effects and other covariates acted
directly on the latent prevalence.
As environmental compartments from the same compound

share sources of fecal exposure, we extended the previous
model to simultaneously consider observations of latrine soil,
household soil, and stored water in each compound (model 5).
Sample type-specific prevalence variables, πi

[type], were modeled
as linear deviations from a latent compound-level prevalence πj
on the log-odds scale

γ

γ

π α π

π α β β β

α μ σ

α σ

= + +

= + + + × +

∼

∼

[ ] [ ] [ ] [ ]
[ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ]

[ ]

X

P T P T X

logit( ) logit( )

logit( )

normal( , )

normal(0, )

i i j

j j
P

j
T

j j j j

j

type type type type comp

comp comp DID comp comp

comp comp comp

type type

(5)

for sample i of a given type (latrine soil, household soil, or
stored water) in compound j, where α[j]

comp is a compound-
varying intercept and α[type] is a varying intercept by sample
type. Compound-level predictors, including the DID estimator
terms, were placed on the compound-prevalence log-odds.63,66

Parameters for sample-level and meteorological predictors in
Xi
[type] were estimated separately for each sample type.
We coded each model in the probabilistic programming

language Stan and fit the models using the RStan interface
with four chains of 1000 warmup and 1000 sampling iterations
each, for a total of 4000 posterior samples (see the SI for Stan
code and discussion of prior distributions).67,68 Models 1−3
were fit separately for HF183 and Mnif in each sample type
(latrine entrance soil, household entrance soil, and stored
water), model 4 was fit separately to each sample type, and a
single Model 5 fit was produced incorporating both indicators
and all sample types. In addition to the DID POR given by the
product-term parameter, we used the posterior predictive

Table 1. Characteristics of Maputo Sanitation Study Compounds and Households Selected for Environmental Sampling,
Samples Collected, and Sampling Dates, Stratified by Study Phase and Treatment Arm

before after

control intervention control intervention

characteristic level metric N summary N summary N summary N summary

animals present compound n (%) 32 15 (47) 25 17 (68) 30 24 (80) 34 30 (88)
population density (persons/100 m2) compound median (IQRa) 29 5.5 (3.5) 23 8.1 (5.9) 28 5.9 (4.8) 33 6.7 (4.6)
wealth index (0−100) household median (IQR) 51 43 (12) 40 43 (12) 55 45 (19) 52 44 (14)
previous-day mean temperature (°C) date median (IQR) 19 21 (2) 16 20 (2) 17 20 (1) 17 21 (3)
seven-day cumulative precipitation (mm) date median (IQR) 19 9 (3) 16 14 (3) 17 13 (39) 17 7 (0)
water container covered sample n (%) 44 25 (57) 28 21 (75) 38 21 (55) 47 30 (64)
narrow-mouth water container sample n (%) 44 13 (30) 28 10 (36) 38 13 (34) 47 14 (30)
plastic food surface material sample n (%) 34 30 (88) 23 18 (78) 29 26 (90) 36 29 (81)
shaded latrine soil sample n (%) 32 24 (75) 17 12 (71) 30 25 (83) 30 22 (73)
shaded household soil sample n (%) 42 31 (74) 28 24 (86) 35 32 (91) 39 31 (79)
wet latrine soil surface sample n (%) 32 20 (62) 17 13 (76) 30 18 (60) 30 21 (70)
wet household soil surface sample n (%) 42 24 (57) 27 13 (48) 35 18 (51) 39 13 (33)
latrine soil moisture (%) sample median (IQR) 33 9.8 (9.8) 23 8.4 (7.2) 30 10.0 (7.9) 30 8.7 (8.3)
household soil moisture (%) sample median (IQR) 49 9.9 (8.6) 35 6.9 (6.1) 47 7.8 (5.4) 43 5.4 (5.9)

aInterquartile range.
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distribution to estimate the prevalence of human fecal
contamination in each stratum and to directly calculate DID
on the probability scale.59,69 Models were adjusted for the
same covariates as DID regression models.
Ethical Approval. This study was approved by the

Institutional Review Board of the University of North Carolina
at Chapel Hill (IRB no. 15-0963), and the associated health
study was approved by the Comite ́ Nacional de Bioet́ica para a
Saud́e (CNBS), Ministeŕio da Saud́e, Republic of Mozambique
(333/CNBS/14), the Ethics Committee of the London School
of Hygiene and Tropical Medicine (reference no. 8345), and
the Institutional Review Board of the Georgia Institute of
Technology (protocol no. H15160). Environmental samples
were only collected from households with enrolled children for
whom written, informed parental or guardian consent had
been given.

■ RESULTS
Sample Characteristics. We collected a total of 770

environmental samples from 507 unique locations at 139
households in 71 compounds. Samples were collected both
pre- and post-intervention at 263 locations (52%), for a total of
526 paired samples and 244 unpaired samples (Table S2).
Characteristics expected to confound the relationship between
sanitation and fecal contamination were largely similar between
treatment arms during each study phase (Table 1). Cumulative
precipitation was higher on average in intervention compounds
at baseline and in control compounds at follow-up. Water
storage containers were also more frequently covered in
intervention (75%) than control households (57%) at baseline,
though the majority of containers were covered in all strata.
Soil surfaces were more often visibly wet in control households
(51%) than intervention (33%) at follow-up, both of which
were lower than at baseline (57 and 48%, respectively). Most
food preparation surfaces were plastic, though more often so in
control households during both study phases. A higher

percentage of compounds from both treatment arms reported
owning domestic animals at follow-up (80−88%) than baseline
(47−68%), which may be related to differences in the
questionnaire between survey phases. Median household
wealth was 40−45 on a 100-point index, with higher variance
among controls at follow-up. Median compound population
density ranged from 5.5 to 8.1 residents/100 m2.

Fecal Indicator Occurrence. At least one fecal indicator
was detected in 94% of samples (720/770) and E. coli was
detected in 718 samples: by culture in 81% (611/755) and by
qPCR in 86% (655/763). Mean cEC concentrations were
lower at follow-up for all sample types in both treatment arms,
a pattern not observed for EC23S concentrations (Figure 1).
Of the 763 samples tested for human-associated indicators,
28% (217) were positive for at least one human marker.
Human-associated indicators were common in soils (23−65%
prevalence, across treatment groups and study phases), but
only HF183 was regularly detected in stored water (10−22%),
and both indicators were rare on food surfaces (0−9%). qPCR
calibration curves (Table S5), detection limits (Table S6), and
the results of laboratory quality controls are presented in the
SI.
Bootstrap DID estimates suggest the intervention reduced

EC23S concentrations on food preparation surfaces and
HF183 prevalence in household soil but minimally impacted
fecal indicator occurrence in other sample types (Table S7).
Notably, HF183 prevalence in household soil was similar
among intervention households in both study phases but
increased among control compounds at follow-up. By contrast,
model-based DID estimates, adjusted for potential confound-
ing, were consistent with no intervention effect on food
preparation surface EC23S concentration or household soil
HF183 prevalence (Table S8). Adjusted models instead
indicate the intervention reduced latrine soil concentrations
of EC23S [mean difference: −1.2 (95% CI: −2.1, −0.30) log10
gc/dry g]. Although several sample characteristics were

Figure 1. Bootstrap estimates of fecal indicator occurrence by study phase and treatment arm. Points indicate mean log10 concentration for E. coli
indicators and prevalence of human-associated indicators, with bars presenting bootstrap 95% CIs.
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imbalanced between treatment arms and study phases (Table
1), estimates from models that adjusted for these variables
were largely similar to the unadjusted models, with adjusted
estimates marginally closer to the null in most cases (Table
S8). EC23S concentrations in latrine soil were again the
exception, with a substantially larger reduction obtained under
the adjusted model than the unadjusted estimate of −0.84
(95% CI: −1.6, −0.02) log10 gc/dry g. Due to low detection
frequency, models were not fit for either human marker on
food surfaces or for Mnif in stored water; source water samples
were excluded from all analyses.26

Conditional Probability of Human Fecal Contami-
nation. The probability that a sample is contaminated with
human feces given the detection of a human indicator is a
function of the indicator’s sensitivity and specificity (Table S9)
and the prevalence of human contamination in the study
environment. At 15% prevalence (approximately the detection
frequency of HF183 in stored water), the probability of human
contamination given a positive test was 26% for HF183 and
30% for Mnif. Only with prevalence above 30−35% was
detecting either indicator more likely than not to correctly
diagnose human fecal contamination. Combining test results
from both indicators improved identification of human
contamination, increasing the probability of contamination to
45% when both markers were positive and the prevalence was
15% (Figure 2). However, the two human markers frequently
disagreed when assessed in the same sample, conflicting in 44%
of household soil, 43% of latrine soil, and 15% of stored water
samples. Furthermore, at 44% prevalence (the highest
detection frequency for HF183, observed in latrine soils),
there remained a >20% chance that a sample positive for both
indicators was not contaminated. Among lower-prevalence
sample types, the conditional probability never reached 50%.
Unless the background prevalence in the study area was about

45% or greater, it is unlikely that the use of HF183 and Mnif
reliably identified human contamination in individual samples,
particularly given the frequent disagreement between the two
markers.

Prevalence of Human Fecal Contamination. Posterior
predictions from each of the five accuracy-adjusted models
were used to estimate stratum-specific prevalence of human
fecal contamination. To compare treatment assignments and
study phases, we predicted prevalence for compounds with no
animals or antecedent precipitation and the sample mean
population density (7 persons/100 m2), wealth score (46), and
previous-day temperature (20.4 °C), in which soil surfaces
were dry and shaded and water storage containers possessed
wide, uncovered mouths. The prevalence estimates were
notably imprecise; the 95% CI of the HF183 prevalence in
post-treatment latrine soil ranged from 3 to 92% for model 2
(Table 2). The 95% CI widths were similar for model 1 and
the bootstrap estimates but were substantially wider for the
other four models, which accounted for FST marker sensitivity
and specificity (see the SI). The intervals narrowed somewhat
when both indicators were considered (model 4) and
narrowed further when all sample types were incorporated
(model 5) but were still wider than the estimates that did not
account for diagnostic accuracy.
Although we did not formally assess the pairwise differences

between prevalence estimates, the wide and largely overlapping
posterior predictive CIs indicate a limited ability to distinguish
between prevalence estimates between different strata or
models. The DID estimates on the probability scale were
strongly consistent with no effect for all model specifications,
which further suggests that the available data were insufficient
to assess prevalence differences between strata. The corre-
sponding prevalence odds ratio estimates obtained directly
from the DID product term were likewise imprecise (Figure

Figure 2. Conditional probability of sample contamination with human feces given detection status of both HF183 and Mnif for all values of
human contamination prevalence. Values of sensitivity and specificity were obtained using human and animal feces from the study area, and are 64
and 67%, respectively, for HF183 and 71 and 70% for Mnif. The dashed vertical lines indicate the HF183 detection frequency for each sample type
to illustrate relevant human contamination probabilities. FP: food preparation surfaces; SW: stored water; HS: household entrance soil; and LS:
latrine entrance soil.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.1c01538
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

F

https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c01538/suppl_file/es1c01538_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c01538/suppl_file/es1c01538_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c01538/suppl_file/es1c01538_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c01538/suppl_file/es1c01538_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c01538/suppl_file/es1c01538_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c01538?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c01538?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c01538?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c01538?fig=fig2&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.1c01538?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Table 2. Bootstrap and Adjusted Model-Based Estimates of Human Marker Sensitivity and Specificity, Prevalence of Human
Fecal Contamination Stratified by Treatment Arm and Study Phase, and Effect of the Sanitation Intervention on Human Fecal
Contamination Prevalence in Soil and Water from Mapsan Study Compounds

prevalence estimate (95% CI)a

control intervention

marker
sensitivity (95%

CI)
specificity (95%

CI) N before after before after
prevalence DIDb (95%

CI)

Latrine Soil
bootstrap HF183 1 1 116 0.33 0.57 0.43 0.43 −0.23

(0.17, 0.50) (0.39, 0.75) (0.23, 0.64) (0.26, 0.61) (−0.60, 0.14)
Mnif 1 1 116 0.51 0.50 0.65 0.36 −0.27

(0.35, 0.69) (0.32, 0.68) (0.45, 0.84) (0.19, 0.54) (−0.63, 0.08)
model 1c HF183 1 1 98 0.32 0.42 0.32 0.37 −0.04

(0.17, 0.49) (0.24, 0.60) (0.15, 0.52) (0.20, 0.57) (−0.22, 0.13)
Mnif 1 1 98 0.44 0.37 0.43 0.27 −0.09

(0.27, 0.63) (0.20, 0.55) (0.24, 0.65) (0.13, 0.45) (−0.27, 0.07)
model 2d HF183 0.60 0.66 98 0.38 0.40 0.38 0.39 −0.01

(0.42, 0.79) (0.53, 0.80) (0.05, 0.88) (0.05, 0.90) (0.05, 0.89) (0.03, 0.92) (−0.19, 0.18)
Mnif 0.64 0.66 98 0.48 0.44 0.47 0.39 −0.04

(0.47, 0.82) (0.51, 0.81) (0.09, 0.90) (0.07, 0.90) (0.07, 0.90) (0.05, 0.92) (−0.25, 0.15)
model 3e HF183 0.65 0.68 98 0.34 0.37 0.34 0.36 −0.01

(0.45, 0.85) (0.55, 0.82) (0.05, 0.83) (0.05, 0.85) (0.04, 0.85) (0.04, 0.88) (−0.19, 0.18)
Mnif 0.70 0.72 98 0.49 0.43 0.47 0.35 −0.06

(0.56, 0.83) (0.58, 0.85) (0.14, 0.84) (0.11, 0.83) (0.13, 0.84) (0.07, 0.82) (−0.27, 0.13)
model 4f HF183 0.64 0.71 98 0.39 0.37 0.37 0.29 −0.06

(0.47, 0.82) (0.57, 0.84) (0.11, 0.73) (0.10, 0.73) (0.10, 0.74) (0.07, 0.68) (−0.25, 0.11)
Mnif 0.71 0.71

(0.58, 0.84) (0.57, 0.84)
model 5g HF183 0.72 0.85 98 0.34 0.35 0.29 0.28 −0.02

(0.57, 0.87) (0.78, 0.91) (0.12, 0.65) (0.13, 0.65) (0.08, 0.63) (0.08, 0.60) (−0.17, 0.14)
Mnif 0.71 0.78

(0.59, 0.83) (0.68, 0.86)
Household Soil

bootstrap HF183 1 1 176 0.17 0.49 0.36 0.38 −0.30
(0.07, 0.28) (0.35, 0.64) (0.20, 0.52) (0.24, 0.52) (−0.57, −0.01)

Mnif 1 1 175 0.43 0.25 0.23 0.24 0.20
(0.30, 0.57) (0.13, 0.39) (0.09, 0.37) (0.12, 0.38) (−0.07, 0.46)

model 1 HF183 1 1 147 0.26 0.43 0.29 0.41 −0.04
(0.15, 0.41) (0.27, 0.58) (0.15, 0.46) (0.26, 0.58) (−0.21, 0.12)

Mnif 1 1 146 0.37 0.27 0.27 0.18 0.01
(0.23, 0.52) (0.15, 0.42) (0.14, 0.43) (0.09, 0.31) (−0.13, 0.14)

model 2 HF183 0.60 0.72 147 0.28 0.34 0.27 0.34 0.00
(0.38, 0.80) (0.61, 0.83) (0.04, 0.73) (0.03, 0.80) (0.03, 0.74) (0.02, 0.83) (−0.18, 0.19)

Mnif 0.57 0.73 146 0.30 0.25 0.25 0.19 −0.01
(0.34, 0.80) (0.63, 0.84) (0.03, 0.78) (0.02, 0.76) (0.02, 0.77) (0.01, 0.77) (−0.18, 0.14)

model 3 HF183 0.66 0.74 147 0.25 0.33 0.25 0.33 0.00
(0.43, 0.85) (0.63, 0.85) (0.04, 0.63) (0.04, 0.74) (0.03, 0.69) (0.03, 0.80) (−0.18, 0.20)

Mnif 0.68 0.76 146 0.26 0.20 0.20 0.13 −0.01
(0.50, 0.82) (0.67, 0.86) (0.03, 0.60) (0.03, 0.52) (0.02, 0.50) (0.02, 0.40) (−0.16, 0.11)

model 4 HF183 0.69 0.73 146 0.20 0.23 0.15 0.16 −0.02
(0.47, 0.87) (0.63, 0.83) (0.04, 0.44) (0.03, 0.50) (0.03, 0.37) (0.02, 0.40) (−0.16, 0.11)

Mnif 0.68 0.75
(0.51, 0.82) (0.66, 0.84)

model 5 HF183 0.72 0.85 146 0.26 0.27 0.22 0.22 −0.01
(0.57, 0.87) (0.78, 0.91) (0.09, 0.49) (0.10, 0.51) (0.06, 0.47) (0.06, 0.45) (−0.16, 0.12)

Mnif 0.71 0.78
(0.59, 0.83) (0.68, 0.86)

Stored Water
bootstrap HF183 1 1 193 0.12 0.10 0.22 0.19 −0.01

(0.04, 0.22) (0.02, 0.20) (0.10, 0.35) (0.09, 0.30) (−0.21, 0.19)
model 1 HF183 1 1 170 0.23 0.19 0.28 0.24 0.00

(0.11, 0.38) (0.09, 0.34) (0.13, 0.48) (0.11, 0.42) (−0.14, 0.14)
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S1). Nonetheless, the model-based prevalence estimates were
consistently more similar between the study phase and
treatment group than the corresponding bootstrap estimates.
This trend was notable for model 5, which assumed that time
and treatment effects acted directly on the compound-wide
prevalence of human contamination, thus affecting all three
sample types equally. The compound-level prevalence
estimates were quite similar, particularly between study phases
for the same treatment group: 27% (95% CI: 9−52%) at
baseline and 28% (9−53%) at follow-up for control
compounds and 22% (6−50%) at baseline and 22% (6−
47%) at follow-up for intervention compounds. The
corresponding estimates for household soil were nearly
identical to the compound-level estimates, with somewhat
higher estimates for latrine soil and lower for stored water.
Although the physical interpretation of this compound-level
construct is uncertain, these estimates suggest that about a
quarter of compounds were measurably impacted by human
fecal contamination, which was unaffected by improvements to
shared sanitation facilities.

■ DISCUSSION

The provision of shared latrines reduced average soil
concentrations of the molecular E. coli marker EC23S at
latrine entrances by more than 1-log10 but did not have a
comparable effect on culturable E. coli. EC23S latrine soil
concentrations rose more in control compounds than they fell
in intervention compounds, which under the parallel trend
assumption is interpreted as a secular trend upwards that the
intervention mitigated, for a much smaller absolute reduction
than suggested by the DID estimate (Figure 1).43 However, an
opposite, downward trend was observed for all cEC
concentrations. This discrepancy between two tests for the
same organism complicates the interpretation of the relatively
strong intervention effect estimated for EC23S. While the exact
reasons for this discrepancy are yet to be determined,
preliminary evidence from a related analysis suggests that the
modified mTEC broth used for E. coli culture may have
produced colonies of the same color and morphology for

Klebsiella spp., which are commonly soil derived and not
specific to feces.70 By contrast, the developers of EC23S
reported 95% specificity to E. coli and cross reactions only with
other Escherichia species, not Klebsiella.46 Accordingly, EC23S
potentially better reflected trends in fecal contamination, while
cEC may have been confounded by soil microbes more
susceptible to environmental conditions, such as the 2016
drought in southern Mozambique.71

A cluster-randomized trial in rural Bangladesh likewise found
scant evidence of reductions in culturable E. coli concentrations
from sanitation improvements.72,73 Latrine provision also did
not reduce the prevalence of pathogenic E. coli genes in soil,
meaning neither culture- nor molecular-based measurements
of soil E. coli were affected.39 Other recent trials have not
assessed intervention impacts on fecal contamination of soil,
but several have evaluated contamination of drinking water,
with some also testing child hands, food, or fomites.15 As with
the present study, all found no effect of sanitation-only
interventions on any environmental compartment; combined
water, sanitation, and hygiene interventions improved drinking
water quality in two studies.13,14

Measures of human-associated FST markers demonstrated
that about a quarter of compounds were impacted by human
fecal contamination, with compound-level prevalence estimates
not statistically different at baseline and follow-up. Similarly,
two cluster-randomized trials, in India and Bangladesh, found
no effect of rural sanitation interventions on the prevalence of
human-associated indicators in stored drinking water.37,39 Both
studies also assessed human markers in mother and child hand
rinse samples, which were not collected in this study. No effect
was observed for either hand type in India or on mother hands
in Bangladesh, although the human marker prevalence may
have been reduced on child hands.39

Accounting for the diagnostic accuracy of FST markers
revealed far greater uncertainty about host-specific fecal
contamination, both of individual samples and population
averages, than indicated by raw indicator measurements. The
relatively poor sensitivity and specificity of both human
markers in this setting severely limited their ability to identify

Table 2. continued

prevalence estimate (95% CI)a

control intervention

marker
sensitivity (95%

CI)
specificity (95%

CI) N before after before after
prevalence DIDb (95%

CI)

model 2 HF183 0.60 0.85 170 0.15 0.14 0.17 0.16 0.00
(0.38, 0.81) (0.78, 0.91) (0.02, 0.40) (0.02, 0.38) (0.02, 0.47) (0.01, 0.47) (−0.13, 0.14)

model 3 HF183 0.67 0.86 170 0.15 0.13 0.17 0.16 0.00
(0.43, 0.85) (0.79, 0.92) (0.02, 0.38) (0.02, 0.36) (0.02, 0.45) (0.02, 0.44) (−0.13, 0.15)

model 5 HF183 0.72 0.85 169 0.19 0.20 0.16 0.16 −0.01
(0.57, 0.87) (0.78, 0.91) (0.04, 0.43) (0.03, 0.45) (0.03, 0.40) (0.02, 0.38) (−0.14, 0.11)

Latent Compound
model 5 HF183 0.72 0.85 109 0.27 0.28 0.22 0.22 −0.01

(0.57, 0.87) (0.78, 0.91) (0.09, 0.52) (0.09, 0.53) (0.06, 0.50) (0.06, 0.47) (−0.16, 0.13)
Mnif 0.71 0.78

(0.59, 0.83) (0.68, 0.86)
aAll models (excluding bootstrap estimates) were adjusted for population density, presence of animals, wealth score, temperature, antecedent
precipitation, and sun exposure and surface wetness for soil samples and storage container mouth width and cover status for water samples.
bDifference-in-differences. cModel 1: single sample type, single marker assuming perfect sensitivity and specificity. dModel 2: single sample type,
single marker with sensitivity and specificity from a local validation study. eModel 3: single sample type, single marker with meta-analytic sensitivity
and specificity. fModel 4: single sample type, two markers with meta-analytic sensitivity and specificity. gModel 5: three sample types, two markers
with meta-analytic sensitivity and specificity.
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specific samples contaminated with human feces, but even
moderate improvements in accuracy could substantially
increase FST marker utility. For example, a study in Singapore
reported 75% sensitivity and 89% specificity for HF183,74

corresponding to a 55% chance a positive sample is
contaminated at 15% background prevalence and an 84%
chance at 44% prevalence, compared with 26 and 60%,
respectively, for detection of HF183 in our study. Correcting
for indicator sensitivity and specificity to human-source
contamination, coupled with the limited observations of each
sample type, yielded imprecise prevalence estimates that were
consistent with both near absence and almost omnipresence of
contamination. While the reduced amplification efficiency of
HF183 (82%) may have contributed to its low sensitivity, it
produced similar accuracy-corrected estimates as Mnif, which
was 95% efficient (Table S5). This imprecision inhibited
detecting intervention effects. The point estimates for the
intervention effect were relatively close to the null, but the full
posterior distributions were consistent with both large
reductions and substantial increases in prevalence attributable
to the intervention. This analysis does not rule out the
possibility that sanitation improvements reduced the preva-
lence of human fecal contamination. Rather, it strongly
suggests that the tools used were inadequate, conveying too
little information to address the research question with an
acceptable degree of confidence.
These limitations highlight the importance of conducting

local validation studies for any new FST application.75

Accounting for diagnostic accuracy is unlikely to improve the
strength or precision of estimates, but may help mitigate
overconfidence and overinterpretation by revealing limitations
of the available measurements. This practice could also be
extended to account for indicator sensitivity and specificity to
strictly fecal targets, rather than environmental microbes with
nonfecal origins, although we lacked the appropriate data to
implement such an analysis for our two nonspecific indicators,
EC23S and cEC. As the diagnostic accuracy framework is
currently limited to binary outcomes, analysis of such high-
prevalence indicators would benefit from the development of
analogous approaches for continuous outcomes. Given the
intermingling in low-income settings of humans and animals,
and their gut microbiomes, alternative FST targets such as
mitochondrial DNA could prove more accurate.76,77 Recent
technological advances also present opportunities for new
approaches that might bypass the limitations of the current
FST paradigm, including portable, long-read sequencing
platforms for metagenomic-based source tracking and parallel
PCR platforms that render simultaneous analysis of multiple
FST markers and comprehensive direct pathogen detection
increasingly feasible.20,78−82 These technologies will also need
to overcome the substantial variability, limited analytical
sensitivity, and matrix interference characteristic of environ-
mental microbial assessments.16

The low signal typical of environmental measurements
suggests that study designspreferably longitudinalthat
maximize observations on select pathways of greatest interest
should be prioritized to support more robust inference,
regardless of analytical approach.83 A recent longitudinal
analysis of E. coli concentrations in rural Bangladesh, collected
at eight timepoints over 2.5 years from 720 households,
demonstrates the advantages of maximizing the number of
basic measurements across time. Although pooled estimates
from certain sample types achieved statistical significance, the

sheer quantity of information available convincingly demon-
strated the lack of physically meaningful sanitation intervention
impacts on ambient fecal contamination.73

Many have speculated that sanitation’s apparent lack of
effect may be due in part to animal fecal contamination.12,22

Animal feces often contain pathogens capable of infecting
humans and animal fecal biomass in domestic environments is
estimated to far exceed that from humans.22,84−86 Inadequate
management of child feces and fecal sludge, contamination of
food and water outside the home, and inadequate community-
level drainage, solid waste, and sanitation services all present
potential pathways of continued contamination despite
household sanitation improvements.24,87−92 Recognizing calls
for “transformative” WASH to address these multifarious
hazards, sustained progress may require high standards of
housing and public services in addition to WASH improve-
ments, necessitating multisectoral coordination and financ-
ing.12,93−95 Even small treatment effects may translate to
positive economic benefits.12 Additionally, quality sanitation
infrastructure can provide important benefits irrespective of
preventing pathogen exposure, particularly in crowded urban
settlements.96,97 For example, previous research found users of
MapSan intervention latrines and similar facilities in the same
neighborhoods reported reduced disgust and embarrassment
about unhygienic conditions and improved perceptions of
security and privacy.98 Based on the results of our study, we
recommend future research to understand the etiology and
ecology of fecal pathogens in domestic environments and
beyond to help inform interventions needed to construct
healthy environments and to protect children’s health.
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S1. Site selection criteria 

Intervention sites were selected by the nongovernmental organization (NGO) Water and 

Sanitation for the Urban Poor (WSUP) according to feasibility and demand criteria (Table S1). 

The MapSan researchers were not involved in the design of the intervention or selection of the 

intervention sites, but did recruit similar compounds to serve as control sites according to a 

reduced set of the same selection criteria applied to intervention sites.  

Table S1. Baseline site selection criteria for intervention and control compounds 

 required for 

criterion 

intervention 

compounds 

control 

compounds 

located in the 11 pre-defined implementation neighborhoods yes noa 

residents share sanitation in poor condition yes yes 

at least 12 residents yes yes 

residents willing to contribute to latrine construction costs yes yes 

sufficient space available for construction of the new facility yes no 

accessible for transportation of construction materials and tank-emptying activities yes no 

legal access to piped water supply yes yes 

groundwater level deep enough to accommodate a septic tank yes no 

at least one child younger than 48 months old in residence no yes 
a also recruited from 6 similar, adjacent neighborhoods; see Knee et al. (2021)1 

 All children under 48 months old living in study compounds at baseline enrollment were 

invited to participate in the MapSan health impact trial following written, informed consent from 

a parent or guardian. At 12-month follow-up, any children living in study compounds who were 

not previously enrolled but would have been under 48 months of age at the time the compound 

was enrolled at baseline were also invited to participate, including children born after baseline. 

Knee et al. (2021) provide additional details on eligibility and enrollment into the MapSan child 

health study component.1 

We collected environmental samples from a subset of compounds already scheduled for 

baseline enrollment during May – August 2015. The specific intervention compounds at which 

we collected baseline environmental samples were selected opportunistically, largely prioritizing 
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compounds with visits scheduled earlier in the morning to ensure sufficient time for sample 

transport and laboratory processing. Control compounds were similarly selected for 

environmental sampling among those already scheduled for baseline enrollment, although we 

prioritized control compounds with similar numbers of residents as the intervention compounds 

that had been selected for environmental sampling in the preceding two weeks. 

The compounds selected for environmental sampling at baseline were revisited in June – 

September 2016, 12 months ( 2 weeks) following the opening of the new latrine for 

intervention compounds and 12 months ( 2 weeks) after baseline enrollment for control 

compounds. Four compounds at which environmental samples were collected at baseline were 

unavailable at follow up due to travel or relocation of eligible children for the health impact 

study. The provision of intervention latrines was substantially delayed for two additional 

compounds following baseline enrollment, rendering them outside the 12-month ( 2 weeks) 

follow-up window for the duration of the June – September 2016 environmental sampling 

campaign. However, environmental samples were collected from 13 additional compounds 

during the 12-month follow-up phase that had not been sampled at baseline but had been 

enrolled in the larger MapSan trial at baseline. These additional compounds were selected 

opportunistically in the same manner as the initial baseline sample set, but intervention 

compounds (n = 11) were prioritized over control compounds (n = 2), which had been 

overrepresented at baseline. 

S2. Samples collected 

We visited additional households and compounds in the follow-up study phase, collecting 

more samples than at baseline (Table S2).2 Fewer source water samples were collected at follow-

up because the municipal water supply was available less often. One control compound (with 
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two enrolled households) independently upgraded the latrine after baseline and was excluded 

from the follow-up sample. 

Table S2. Number of observations of compounds, households, and each sample type 

 before  after 

observation unit control intervention  control intervention 

compounds 33 25  30 34 

households 86 66  86 90 

latrine entrance soil 33 23  30 30 

household entrance soil 49 36  47 45 

compound source water 23 21  19 22 

household stored water 50 41  52 55 

food preparation surfaces 50 40  53 51 

 

 We requested that respondents provide both household stored water and household food 

preparation surfaces in the manner or condition in which they would typically be used. For stored 

water, we requested that the respondent provide it to us as if they were giving a child water to 

drink. Similarly, we requested that the household respondent identify or provide a surface they 

would typically use to prepare food, in the condition in which they would use it. If multiple 

surfaces were available, the respondent decided which to present as representative of their 

ordinary food preparation practices. Additional descriptions of specific sampling procedures and 

the observed baseline characteristics of each sample type are provided in Holcomb et al. (2020).2 

 

S3. qPCR assay details 

All qPCR assays were performed using TaqMan Environmental Master Mix 2.0 and were 

subjected to an initial 10 minute incubation at 95°C, after which the cycling conditions specified 

by the assay developers were followed for each assay (Table S3).  
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Table S3. qPCR assay details 

assayreference cycles parameters 

oligonucleotide 

(nM) sequence (5'-3') 

EC23S8573 40 
15 s: 95 °C 

60 s: 60 °C 

F (1000) GGTAGAGCACTGTTTtGGCA 

R (1000) TGTCTCCCGTGATAACtTTCTC 

P (80) 6-FAM-TCATCCCGACTTACCAACCCG-BHQ1 

HF183/ 

BacR2874 
40 

15 s: 95 °C 

60 s: 60 °C 

HF183 (1000) ATCATGAGTTCACATGTCCG  

BacR287 (1000) CTTCCTCTCAGAACCCCTATCC 

BacP234MGB (80) 6-FAM-CTAATGGAACGCATCCC-BHQplus 

Mnif 5 50 
10 s: 95 °C 

30 s: 57 °C 

Mnif-202F (800) GAAAGCGGAGGTCCTGAA 

Mnif-353R (800) ACTGAAAAACCTCCGCAAAC 

Mnif-236P (240) 
6-FAM-CCGGACGTGGTGTAAC 

AGTAGCTA-BHQ1 

Sketa226,7 40 
15 s: 95 °C 

60 s: 60 °C 

SketaF2 (1000) GGTTTCCGCAGCTGGG 

SketaR22 (1000) CCGAGCCGTCCTGGTC 

SketaP2 (80) 6-FAM-AGTCGCAGGCGGCCACCGT-BHQ1 

 

S4. Calibration curves 

Calibration curves for quantifying molecular fecal indicator gene copies were fit to ten-

fold dilution series of positive controls (PC) that had been spiked with reference material for all 

three assays and extracted alongside each batch of samples.2 Three gBlock linear DNA 

fragments (Integrated DNA Technologies, Skokie, Il, USA) containing composite reference 

sequences for the three fecal source tracking assays considered in this paper as well as additional 

assays considered in the associated validation study were used as standard reference material for 

the positive controls (Table S4).2,8,9 Extracting the reference material accounted for loss of target 

DNA during extraction but induced additional variability between dilution series constructed 

from each PC. We therefore allowed both the slopes and intercepts of the calibration curves to 

vary by qPCR instrument run and extraction batch to account for the additional variation. The 

resulting curves were relatively linear (R2 > 95%) when averaged across all instrument runs and 

extraction batches but were somewhat inefficient, particularly for HF183 (Table S5). 
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Table S4. Synthetic DNA reference material spiked into positive controls 

assays covered sequence [5'-3'] 

GenBank 

(base positions) 

length 

[bases] 

BacHum-UCD10 

BacUni-UCD10 

HF183/BacR28711 

CCAGGATGGGATCATGAGTTCACATGTCCGCATGAT

TAAAGGTATTTTCCGGTAGACGATGGGGATGCGTTC

CATTAGATAGTAGGCGGGGTAACGGCCCACCTAGTC

AACGATGGATAGGGGTTCTGAGAGGAAGGTCCCCCA

CATTGGAACTGAGACACGGTCCAAACTCCTACGGGA

GGCAGCAGTGAGGAATATTGGTCAATGGGCGATGGC

CTGAACCAGCCAAGTAGCGTGAAGGATGACTGCCCT

ATGGGTTGTAAACTTCTTTTATAAAGGAATAAAGTC

GGGTATGCATACCCGTTTGCATGTACTTTATGAATAA

GGATCGGCTAACTCCGTGCCAGCAGCCGCGGTAATA

CGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTT

AAAGGGAGCGTAGATGGATGTTTAAGTCAGTTGTGA

AAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATAC

TGGATGTCTTGAGTGCAGTTGAGGCAGGCGGAATTC

GTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGA

ACTCCGATTGCGAAGGCAGC 

AB242142 

(170-730) 
560 

GFD12 

LA3513 

TGGGTCTAATACCGGATACGACCATCTGCCGCATGG

CGGGTGGTGGAAAGTTTTTCGATTGGGGATGGGCTC

GCGGCCTATCAGTTTGTTGGTGGGGTAATGGCCTAC

CAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGA

CCGGCCACACTGGGACTGAGACACGGCCCAGACTCC

TACGGGAGGCAGCAGTGGGGAATATTGCACAATGG

GGGAAACCCTGATGCAGCGACGCAGCGTGCGGGAT

GACGGCCTTCGGGTTGTAAACCGCTTTCAGCAGGGA

AGAAGCCTTCGGGTGACGGTACCTGCAGAAGAAGTA

CCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGT

AGGGTACGAGCGTTGTCCGGAATTATTGGGCGTAAA

GAGCTCGTAGGTGGTTGGTCACGTCTGCTGTGGAAA

CGCAACGCTTAACGTTGCGCGGGCAGTGGGTACGGG

CTGACTAGAGTGCAGTAGGGGAGTCTGGAATTCCTG

GTGTAGCGGTGAAATGCGCAGATATCAGGAGGAAC

ACCGGTGGCGAAGGCGGGACTCTGGGCTGTGACTGA

CACTGGGGAGCGAAAGCATTGCTAACAGTTcGGCTG

AGCACTCTAGGGAGACTGCCTTCGCAAGGAGGAGGA

AGGTGAGGACGACGTCAAGTCATCATGGCCCTTACG

CCTAGGGCTACACACGTGCTACAATGGGATGTACAA

AGAGACGCAATACCGCGA 

FJ462358 

(156-746) 

JN084061 

(29-171) 

732 

EC23S8573 

HAdV14 

Mnif5 

TAACTATGGTCATCGTTCGTCAGCAGTAACAGTAATT

GCTACACCTGCTGAAACCACTGTCCCTTTTTCTTGGG

CAACTCTTGTTTATGTGTTGAAAGCGGAGGTCCTGA

ACCGGGTGTTGGCTGTGCCGGACGTGGTGTAACAGT

AGCTATGAAAAGACTTGAAAACTTAGGTGTTTTTGA

TAAGGATTTGGATGTAGTCATTTATGGTGTACTTGGA

GATGTTGTTTGCGGAGGTTTTTCAGTGCCTTTACGTT

CTCGGGCCAGGACGCCTCGGAGTACCTGAGCCCCGG

GCTGGTGCAGTTTGCCCGCGCCACCGAGACGTACTT

CAGCCTGAATAACAAGTTTAGAAACCCCACGGTGGC

GCCTACGCATCTCCGGGGGTAGAGCACTGTTTCGGC

AAGGGGGTCATCCCGACTTACCAACCCGATGCAAAC

TGCGAATACCGGAGAATGTTATCACGGGAGACACAC

GGCGGGT 

AE015928 

(4515891-

4515973) 

AB019138 

(192-363) 

AC_000008 

(18885-19000) 

DQ682619 

(847-954) 

475 
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Table S5. Mean (95% CI) estimates of calibration curve parameters 

assay intercept slope efficiency (%) R2 

EC23S 47.9 (47.3, 48.6) -3.50 (-3.64, -3.37) 93.1 (88.1, 98.1) 0.98 (0.97, 0.98) 

HF183 47.5 (46.4, 48.6) -3.85 (-4.07, -3.67) 81.8 (76.1, 87.4) 0.98 (0.97, 0.98) 

Mnif 48.8 (47.7, 50.3) -3.47 (-3.79, -3.23) 94.5 (83.6, 104.0) 0.95 (0.93, 0.95) 

 

S5. Detection limits 

The limit of detection (LOD) for each assay was obtained in terms of the quantification 

cycle (Cq), the number of amplification cycles above which the target would be considered 

absent from the reaction, using receiver operating characteristic (ROC) analysis.2,15 We 

performed ROC analysis on the local validation study data presented in Holcomb et al. (2020), 

considering Cq cutoff values from 10 to the maximum number of cycles indicated by the assay 

developers, in full-cycle increments. We calculated diagnostic sensitivity and specificity for each 

cutoff value, considering any reactions with a Cq value below the cutoff as positive. The highest 

Cq value that maximized the Youden index, 𝐽 =  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1, for each assay 

was considered the assay LOD (Table S6).15,16 

Process limits of detection (PLOD) were estimated for each sample from the assay LOD 

Cq values, the extraction batch- and instrument run-specific calibration curve estimates, and the 

amount of sample processed, i.e. volume of water filtered or the dry mass or surface area 

represented by the eluate filtered for soil samples and surface swabs, respectively. For E. coli 

enumerated by culture (cEC), we assumed an assay LOD of 1 cfu per plate and calculated the 

PLOD for each sample on the basis of the amount of sample represented by the least-diluted 

plate read for that sample.2 The PLOD averages indicate that relatively high gene copy 

concentrations were required for reliable detection by any of the three qPCR-based assays, on the 

order of >10,000 gc/dry gram of soil, nearly 1000 gc/100 mL water, and >3000 gc/100 cm2 of 

food preparation surface (Table S6). 



 S9 

Table S6. qPCR assay limits of detection and mean sample-specific process limits of 

detection by sample matrix 

  process limit of detection 

assay 

assay 

LODa Cqb 

soil 

log10 gcc/dry g 

water 

log10 gc/100 mL 

surface 

log10 gc/100 cm2 

n mean (SDd) n mean (SD) n mean (SD) 

EC23S 39 298 4.51 (0.11) 292 3.27 (0.12) 199 3.96 (0.30) 

HF183 39 299 4.24 (0.33) 292 2.85 (0.29) 199 3.45 (0.36) 

Mnif 41 298 4.18 (0.17) 291 3.03 (0.11) 196 3.53 (0.35) 
a limit of detection 
b quantification cycle 
c gene copies  
d standard deviation 

 

S6. Laboratory quality control 

Sterile PBS was filtered as a laboratory blank for approximately every 10 samples 

filtered, all of which were culture-negative for cEC (n = 151). At least three no template control 

(NTC) reactions were included on every qPCR run using 5 µL nuclease-free water in place of 

sample template. Each qPCR run typically included samples from three extraction batches, and a 

negative extraction control (NEC) was included from each extraction batch represented on the 

plate. HF183 was absent in all NTC (n = 46) and NEC (n = 46) reactions. Mnif was likewise not 

detected in any NTC (n = 42) or NEC (n = 46) reaction. However, EC23S was detected in 2% of 

NTC (1/45) and 11% of NEC (5/46) reactions. EC23S concentrations were low in the 

contaminated negative controls, with a mean Cq of 38.1 and a minimum Cq of 37.1—only 

slightly above the detection limit of 39 cycles. Such low levels of contamination have been 

reported previously and are thought to be due to residual E. coli DNA in the Environmental 

Master Mix from the production process.2,17 One latrine soil sample was considered inhibited 

based on a greater than 3 Cq deviation from the mean Sketa22 Cq of all NECs and positive 

controls on the same plate. This sample was diluted 1:5 in all further analyses. For each sample 

type, 10% of samples were randomly selected to be analyzed by each qPCR assay in technical 

duplicate reactions. The detection status of EC23S agreed in 96% (74/77) of replicate pairs. 
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HF183 results matched for 86% (66/77) of paired reactions and Mnif agreed in 95% (71/75). 

Samples analyzed in duplicate were considered positive for a given target if at least one of the 

replicate reactions was above the limit of detection. 

S7. Conditional probability 

The conditional probability of human contamination, 𝐶, given the detection of two 

human-associated markers, 𝑀1and 𝑀2 is given by 

 
𝑃(𝐶+|𝑀1

+ ∩ 𝑀2
+) =

𝑃(𝑀1
+|𝐶+) × 𝑃(𝑀2

+|𝐶+) × 𝑃(𝐶+)

𝑃(𝑀1
+|𝐶+) × 𝑃(𝑀2

+|𝐶+) × 𝑃(𝐶) + 𝑃(𝑀1
+|𝐶−) × 𝑃(𝑀2

+|𝐶−) × 𝑃(𝐶−)
 

=
𝑆𝑒1 × 𝑆𝑒2 × 𝑃(𝐶+)

𝑆𝑒1 × 𝑆𝑒2 × 𝑃(𝐶+) + (1 − 𝑆𝑝1) × (1 − 𝑆𝑝2) × (1 − 𝑃(𝐶+))
 

(1) 

where 𝑆𝑒1 =  𝑃(𝑀1
+|𝐶+),  𝑆𝑒2 =  𝑃(𝑀2

+|𝐶+), 𝑆𝑝1 =  𝑃(𝑀1
−|𝐶−), 𝑆𝑝2 =  𝑃(𝑀2

−|𝐶−), and 𝐴+ 

indicates the presence, and 𝐴− the absence, of variable 𝐴.18 We calculated the conditional 

probability of contamination for HF183 and Mnif separately and for each combination of the two 

indicators (𝑀1
+, 𝑀2

+; 𝑀1
+, 𝑀2

−;  𝑀1
−, 𝑀2

+; 𝑀1
−, 𝑀2

−) by sample type. 

S8. Difference-in-differences estimates 

The effect of the intervention was estimated using difference-in-differences approaches. 

Crude DID estimates of E. coli log10-concentration and human FST marker prevalence were 

calculated using 2000 bootstrap samples (Table S7). The DID estimate was calculated as 

 𝐷𝐼𝐷 = (E[𝑌𝑇=1,𝑃=1] − E[𝑌𝑇=1,𝑃=0]) − (E[𝑌𝑇=0,𝑃=1] − E[𝑌𝑇=0,𝑃=0]) (2) 

where 𝑌𝑇,𝑃 are the observed indicator values for treatment group 𝑇 in study phase 𝑃. The value 

of 𝑇 is 0 for control compound observations and 1 for intervention compounds; likewise, 𝑃 takes 

the value 0 for pre-treatment (baseline) observations and 1 post-treatment (follow-up). 

Observations below the PLOD or too numerous to count were imputed by sample type from a 

truncated normal distribution with mean and standard deviation obtained through maximum 
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likelihood estimation, assuming the log10 concentration was normally distributed and subject to 

left- and right-censoring.2,19 Model-based DID estimates were obtained using the product-term 

representation of the DID estimator in regression models, which permits the inclusion of 

additional covariates. We produced both crude model-based estimates, which only included 

terms for the DID estimator, as well as adjusted estimates that included additional terms for 

meteorological, compound, household, sample characteristics (Table S8).
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Table S7. Bootstrap difference-in-differences estimates 

  before  after   

  control  intervention  control  intervention  DIDa 

indicator sample type N estimate  N estimate  N estimate  N estimate  estimate 

  E. coli log10 concentration, mean (95% CI)   

cEC latrine soil 33 4.0 (3.6, 4.3)  23 4.0 (3.5, 4.4)  30 3.3 (2.9, 3.7)  30 3.0 (2.6, 3.5)  -0.3 (-1.1, 0.5) 

 household soil 49 4.1 (3.8, 4.3)  36 4.2 (3.9, 4.5)  47 3.7 (3.5, 4.0)  45 3.4 (3.1, 3.8)  -0.4 (-1.0, 0.1) 

 stored water 50 1.8 (1.4, 2.2)  41 1.6 (1.1, 2.0)  52 1.1 (0.7, 1.4)  55 1.0 (0.7, 1.3)  0.2 (-0.6, 0.9) 

 food surface 50 3.3 (2.8, 3.8)  40 2.9 (2.3, 3.6)  53 2.0 (1.5, 2.5)  51 1.9 (1.4, 2.4)  0.3 (-0.8, 1.3) 

EC23S latrine soil 33 6.2 (5.8, 6.6)  23 6.9 (6.4, 7.4)  30 6.7 (6.4, 7.1)  30 6.5 (6.0, 7.0)  -0.9 (-1.8, 0.0) 

 household soil 49 6.8 (6.5, 7.0)  36 6.7 (6.4, 7.0)  47 6.7 (6.4, 7.0)  45 6.6 (6.4, 6.9)  0.0 (-0.5, 0.5) 

 stored water 50 4.1 (3.9, 4.3)  41 4.4 (4.2, 4.7)  52 4.2 (3.9, 4.4)  55 4.0 (3.8, 4.2)  -0.4 (-0.9, 0.0) 

 food surface 50 4.4 (4.2, 4.7)  40 5.0 (4.8, 5.3)  53 4.7 (4.4, 5.0)  51 4.5 (4.2, 4.8)  -0.8 (-1.4, -0.3) 

  human marker prevalence, % (95% CI)   

HF183 latrine soil 33 33 (17, 50)  23 43 (23, 64)  30 57 (39, 75)  30 43 (26, 61)  -23 (-60, 14) 

 household soil 49 17 (7, 28)  36 36 (20, 52)  47 49 (35, 64)  45 38 (24, 52)  -30 (-57, -1) 

 stored water 50 12 (4, 22)  41 22 (10, 35)  52 10 (2, 20)  55 19 (9, 30)  -1 (-21, 19) 

 food surface 50 2 (0, 7)  40 0 (0, 0)  53 9 (2, 18)  51 2 (0, 7)  -5 (-16, 4) 

Mnif latrine soil 33 51 (35, 69)  23 65 (45, 84)  30 50 (32, 68)  30 36 (19, 54)  -27 (-63, 8) 

 household soil 49 43 (30, 57)  36 23 (9, 37)  47 25 (13, 39)  45 24 (12, 38)  20 (-7, 46) 

 stored water 50 0 (0, 0)  41 2 (0, 8)  52 0 (0, 0)  55 0 (0, 0)  -2 (-8, 0) 

 food surface 50 0 (0, 0)  40 3 (0, 8)  53 2 (0, 7)  51 0 (0, 0)  -4 (-12, 0) 
a difference-in-differences: (intervention, after – intervention, before) – (control, after – control, before) 
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Table S8. Model-based difference-in-differences estimates 

 
 latrine entrance soil  household entrance soil  household stored water  food preparation surfaces 

 
 crudea  adjustedb  crude  adjusted  crude  adjusted  crude  adjusted 

target  N DIDc  N DID  N DID  N DID  N DID  N DID  N DID  N DID 

  E. coli log10 concentration change (95% CI) 

cEC  111 -0.37 

(-1.17, 0.44) 

 95 -0.42 

(-1.28, 0.40) 

 175 -0.34 

(-0.92, 0.22) 

 146 0.05 

(-0.62, 0.72) 

 194 0.15 

(-0.61, 0.92) 

 170 -0.42 

(-1.28, 0.44) 

 192 0.18 

(-0.9, 1.26) 

 169 -0.11 

(-1.4, 1.17) 

EC23S  116 -0.84 

(-1.64, -0.02) 

 98 -1.22 

(-2.11, -0.30) 

 176 0.06 

(-0.46, 0.57) 

 147 0.36 

(-0.26, 1.01) 

 193 -0.46 

(-0.89, -0.04) 

 170 -0.41 

(-0.92, 0.12) 

 193 -0.82 

(-1.46, -0.19) 

 171 -0.56 

(-1.32, 0.19) 

  human target prevalence odds ratio (95% CI) 

HF183  116 0.94 

(0.40, 1.87) 

 98 0.92 

(0.38, 1.87) 

 176 0.83 

(0.39, 1.54) 

 147 0.90 

(0.38, 1.80) 

 193 1.12 

(0.48, 2.27) 

 170 1.05 

(0.44, 2.15) 

 
  

 
  

Mnif  116 0.73 

(0.31, 1.44) 

 98 0.71 

(0.29, 1.47) 

 175 1.24 

(0.53, 2.46) 

 146 1.00 

(0.39, 2.06) 

 
  

 
  

 
  

 
  

a not adjusted for covariates; include terms for study phase, treatment arm, and their product, and compound-varying intercepts 
b adjusted for animal presence, population density, household wealth, temperature, precipitation, and sample-specific variables: sun exposure 

and surface wetness for soils, presence of lid and width of container mouth for stored water, and food surface material. 
c difference-in-differences estimated as the regression coefficient on the product of study phase and treatment arm indicators 

 

 



S9. Validation studies 

Local differences in diet, geography, and population history affecting the gut microbiome 

composition of a given population are expected to play the key role in determining local fecal 

source tracking performance.20,21 However, multi-laboratory comparisons have also 

demonstrated that assay performance can vary meaningfully between labs analyzing the same set 

of challenge samples.22 Furthermore, assay design and other intrinsic characteristics may also 

impact potential performance—that is, some assays may have more robust designs that increase 

the likelihood of performing well in a variety of settings and populations. Source tracking 

validation studies typically report crude sensitivity and specificity values without quantifying the 

uncertainty in these estimates, which could be substantial considering the limited number of 

samples analyzed in many studies, particularly in resource-limited settings (Table S9).  

We incorporate a meta-analysis of FST validation studies for our selected human 

markers, which provides an opportunity to partially pool information across a variety of locations 

to potentially refine the sensitivity and specificity estimates for our specific study setting.23 The 

hierarchical structure of the meta-analytic model means that the estimates for any given location 

are driven by the data from that location. Sensitivity and specificity estimates at a location with a 

large amount of data would be almost entirely determined by the local data and largely 

unaffected by the other studies, while estimates from locations with sparse data, which would be 

uncertain on their own, incorporate more information pooled from other studies.24 The extent of 

information pooling is also determined by the consistency of marker performance across studies. 

Highly variable marker performance between study locations suggests that performance is 

mostly driven by differences in local characteristics, limiting the amount of information that can 

be gained by considering performance in other locations. Accordingly, meta-analytic 
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performance estimates in a particular location will be determined largely by the local samples 

and minimally influenced by data from other locations. On the other hand, similar marker 

performance across locations suggests that intrinsic assay characteristics play a larger role in its 

performance, enabling information from other locations to refine the estimates at specific 

locations with limited local data.25 We adjust for diagnostic accuracy using the meta-analytic 

sensitivity and specificity estimates for our study location, such that the estimates are driven by 

our local data but are influenced by the broader trends in assay performance across all the studies 

considered. The degree of influence by outside data depends on the degree of uncertainty in the 

local data (a function of sample size) and the similarity of performance estimates across all the 

studies considered, which is reflected in the between-study standard deviations, 𝜎𝑆𝑒 and 𝜎𝑆𝑝. 

Validation studies included in the performance meta-analysis were identified from 

Google Scholar records of articles citing the original assay publications and from the references 

of each published validation study identified.5,7,11 We only included HF183 studies that assessed 

the HF183/BFDRev assay or its modification used in this study, HF183/BacR287.11 We 

identified HF183 validation studies conducted on five continents, including two in Africa, seven 

in Asia, two in Australia, four in North America, and one in South America (Table S9). All 

identified Mnif studies used samples from the USA except for our study in Mozambique. The 

rural/urban status of the settings from which samples were collected could not be determined for 

all studies and were more often specified for studies conducted in low- and middle-income 

countries. We used estimates that considered samples detected below the limit of quantification 

(DNQ) as negatives when separate estimates were reported by DNQ definition.26  

  



 S16 

Table S9. Published validation studies of human fecal indicators HF183 and Mnif 

   human samples  

non-human 

samples    

study location setting N positive  N positive sensitivity specificity ref 

HF183           

1 Mozambique urban 14 9  27 9 64% 67% 2 

2 Bangladesh urban 5 3  20 12 60% 40% 21 

3 Bangladesh rural 5 4  20 10 80% 50% 27 

4 India rural 35 10a  60 12a 29% 80% 28 

5 Kenya rural 17 11  25 0 65% 100% 29 

6 Thailand 
 

28 25  100 19 89% 81% 30 

7 Costa Rica 
 

8 8  47 3 100% 94% 31 

8 Singapore urban 56 42  85 9 75% 89% 32 

9 Nepal 
 

10 10  44 30 100% 32% 33 

10 USA rural 4 4  109 0 100% 100% 34 

11 Japan 
 

20 20  15 0 100% 100% 35 

12 Australia 
 

32 24  359 12 72% 96% 36 

13 USA, 

Australia 

   
 184 6 

 
97% 37 

14 USA 
 

60 57a  130 10 a 95% 92% 26 

15 Peru peri-urban 30 23  71 24 77% 66% 38 

Mnif  
   

 
    

 

1 Mozambique urban 14 10  27 8 71% 70% 2 

2 USA 
 

60 36a  130 31a 60% 76% 26 

3 Indiana 
 

59 40  120 9 68% 93% 18 

4 Mississippi 
 

62 51  243 101 82% 58% 18 

a samples below the limit of quantification considered negative 

 

S10. Diagnostic accuracy 

We considered HF183 validation data from 14 studies of diagnostic sensitivity and 15 

studies of specificity (Table S7). For Mnif, we incorporated data from four validation studies. 

The number of samples ranged from 5–62 for human feces and 15–359 for non-human. Reported 

crude sensitivity ranged from 29-100% for HF183 and 60-82% for Mnif. Crude specificities 

were reported from 32–100% for HF183 and 58-93% for Mnif. 

By incorporating indicator validation data into models of human fecal contamination, we 

obtained estimates of indicator sensitivity and specificity that were partially informed by 

observations in environmental samples with unknown fecal contamination status. For this reason, 

accuracy estimates from the same model differed by sample type (main text, Table 2). We first 
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considered only validation data from our study area (Model 2), which produced slightly lower 

point estimates for HF183 sensitivity (60%) than obtained from crude calculations (64%). The 

sensitivity estimates were similar for all three sample types, with the greatest uncertainty in 

stored water (95% CI: 38-81%). The HF183 specificity estimate was similar to the crude value 

(67%) for latrine soil [66% (53-80%)] but the estimates were higher for household soil [72% 

(61-83%)] and stored water [85% (77-91%)], in which HF183 was detected less frequently. 

Sensitivity and specificity patterns for Mnif followed similar patterns. 

Meta-analytic sensitivity and specificity estimates were slightly higher than the single-

study estimates when using a single indicator (Model 3) and when combining both indicators 

(Model 4). However, the 95% CIs remained similar for all three models, suggesting the inclusion 

of additional information minimally impacted estimates of diagnostic accuracy. Model 5, which 

simultaneously considered both indicators in all sample types, provided a single set of sensitivity 

and specificity estimates for each indictor. The estimates were comparable to values observed for 

individual sample types but featured narrower 95% CIs, indicating reduced uncertainty in 

indicator performance with the inclusion of data from multiple sample types. While the estimated 

sensitivity for Mnif [71% (59-83%)] remained similar to the crude value (71%), the estimated 

specificity of both indicators and HF183 sensitivity were somewhat higher than expected from 

crude calculations. 

S11. Accuracy-adjusted effects 

We constructed a series of models to estimate sanitation intervention effects on the 

prevalence of human fecal contamination. In the first model, human-associated fecal indicators 

were used as direct proxies for human fecal contamination, equivalent to assuming 100% 

sensitivity and specificity. The estimated intervention effect, given by the DID prevalence odds 
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ratio, was less than one for both indicators in latrine soil and household soil and above one for 

HF183 in stored water (Figure S1). However, the estimates were imprecise and encompassed 

both large increases and large reductions within the 95% CIs, providing little evidence for an 

effect of the intervention on either indicator in any sample type. Incorporating local validation 

data to account for indicator accuracy (Model 2) further widened the 95% CIs, indicating 

additional uncertainty about the intervention effect on the prevalence of human fecal 

contamination. Effect estimates incorporating multiple validation datasets (Model 3) were 

largely similar to those using local validation data alone. When using HF183 and Mnif to jointly 

estimate human fecal contamination (Model 4), the DID estimates were similar to estimates for 

individual indicators. Similarly, combining observations from all three sample types produced an 

estimated intervention effect close to the null with the 95% CI encompassing both reductions and 

increases in the odds of human fecal contamination at the compound level [POR: 0.93 (95% CI: 

0.42-2.1)]. Across all model formulations, there was little evidence for an effect of the sanitation 

intervention on the prevalence of human fecal contamination. 
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Figure S1. Difference-in-difference prevalence odds ratio (POR) estimates of the sanitation 

intervention effect on human fecal contamination under five different models. Model 1 

made no correction for indicator accuracy, Model 2 used local validation data to account 

for indicator sensitivity and specificity, and Models 3, 4 and 5 used meta-analytic estimates 

of local indicator accuracy. Model 3 was fit separately by indicator and sample type, Model 

4 was fit to both indicators by sample type, and Model 5 used both indicators in all sample 

types to estimate the latent compound prevalence of human fecal contamination. All 

models were adjusted for population density, presence of animals, wealth score, 

temperature, antecedent precipitation, and sun exposure and surface wetness for soil 

samples and storage container mouth width and cover status for water samples. 

 

S12. Human fecal contamination prevalence estimates 

Posterior predictions from each of the five models were used to estimate stratum-specific 

prevalence. We fit unadjusted models that included only intercepts and the DID terms (Table 

S10) as well as adjusted models with meteorological, compound, household, and sample 

characteristics included as covariates (Table 2, main text). 
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Table S10. Estimated sensitivity, specificity, and prevalence of human fecal contamination from unadjusted models 

     prevalence estimate (95% CI)  

  sensitivity 

(95% CI) 

specificity 

(95% CI) 
 control  intervention prevalence DID 

(95% CI)  target N before after  before after 

latrine soil          
bootstrap HF183 1 1 116 0.33 (0.17, 0.50) 0.57 (0.39, 0.75)  0.43 (0.23, 0.64) 0.43 (0.26, 0.61) -0.23 (-0.60, 0.14) 
 Mnif 1 1 116 0.51 (0.35, 0.69) 0.50 (0.32, 0.68)  0.65 (0.45, 0.84) 0.36 (0.19, 0.54) -0.27 (-0.63, 0.08) 

model 1 HF183 1 1 116 0.41 (0.28, 0.54) 0.49 (0.35, 0.64)  0.40 (0.26, 0.56) 0.45 (0.30, 0.61) -0.04 (-0.22, 0.14) 
 Mnif 1 1 116 0.54 (0.41, 0.67) 0.48 (0.35, 0.62)  0.57 (0.41, 0.71) 0.42 (0.27, 0.57) -0.09 (-0.27, 0.09) 

model 2 HF183 0.59 (0.41, 0.80) 0.65 (0.52, 0.79) 116 0.41 (0.05, 0.90) 0.44 (0.05, 0.92)  0.41 (0.04, 0.91) 0.43 (0.04, 0.93) -0.01 (-0.20, 0.19) 
 Mnif 0.68 (0.50, 0.86) 0.67 (0.52, 0.82) 116 0.53 (0.11, 0.92) 0.48 (0.09, 0.91)  0.53 (0.10, 0.92) 0.44 (0.07, 0.93) -0.05 (-0.25, 0.14) 

model 3 HF183 0.65 (0.45, 0.85) 0.68 (0.55, 0.83) 116 0.39 (0.06, 0.87) 0.43 (0.06, 0.89)  0.38 (0.05, 0.88) 0.41 (0.04, 0.91) -0.01 (-0.19, 0.18) 
 Mnif 0.70 (0.55, 0.83) 0.70 (0.55, 0.84) 116 0.54 (0.17, 0.87) 0.49 (0.13, 0.88)  0.55 (0.14, 0.88) 0.44 (0.09, 0.88) -0.05 (-0.25, 0.14) 

model 4 HF183 0.64 (0.45, 0.84) 0.69 (0.55, 0.83) 
116 0.47 (0.16, 0.79) 0.46 (0.13, 0.79) 

 
0.47 (0.13, 0.81) 0.40 (0.10, 0.77) -0.06 (-0.25, 0.13)  Mnif 0.71 (0.56, 0.84) 0.69 (0.54, 0.83)  

model 5 HF183 0.72 (0.55, 0.87) 0.83 (0.76, 0.90) 
107 0.48 (0.25, 0.73) 0.49 (0.27, 0.72) 

 
0.43 (0.19, 0.70) 0.47 (0.25, 0.71) 0.04 (-0.14, 0.23)  Mnif 0.71 (0.58, 0.84) 0.79 (0.70, 0.88)  

household soil          

bootstrap HF183 1 1 176 0.17 (0.07, 0.28) 0.49 (0.35, 0.64)  0.36 (0.20, 0.52) 0.38 (0.24, 0.52) -0.30 (-0.57, -0.01) 
 Mnif 1 1 175 0.43 (0.30, 0.57) 0.25 (0.13, 0.39)  0.23 (0.09, 0.37) 0.24 (0.12, 0.38) 0.20 (-0.07, 0.46) 

model 1 HF183 1 1 176 0.27 (0.18, 0.37) 0.41 (0.30, 0.53)  0.31 (0.20, 0.44) 0.40 (0.28, 0.53) -0.05 (-0.21, 0.11) 
 Mnif 1 1 175 0.37 (0.26, 0.48) 0.29 (0.19, 0.40)  0.29 (0.18, 0.41) 0.24 (0.14, 0.35) 0.03 (-0.11, 0.17) 

model 2 HF183 0.58 (0.36, 0.80) 0.71 (0.61, 0.83) 176 0.25 (0.03, 0.78) 0.30 (0.02, 0.81)  0.26 (0.02, 0.78) 0.31 (0.02, 0.84) 0.00 (-0.18, 0.19) 
 Mnif 0.65 (0.41, 0.86) 0.75 (0.66, 0.85) 175 0.22 (0.03, 0.55) 0.18 (0.02, 0.48)  0.18 (0.02, 0.49) 0.13 (0.01, 0.43) 0.00 (-0.13, 0.13) 

model 3 HF183 0.65 (0.40, 0.85) 0.74 (0.63, 0.85) 176 0.23 (0.03, 0.64) 0.30 (0.03, 0.71)  0.23 (0.03, 0.66) 0.30 (0.02, 0.76) 0.00 (-0.18, 0.18) 
 Mnif 0.69 (0.52, 0.84) 0.77 (0.68, 0.86) 175 0.22 (0.03, 0.50) 0.17 (0.02, 0.41)  0.17 (0.02, 0.41) 0.12 (0.01, 0.34) 0.00 (-0.12, 0.13) 

model 4 HF183 0.67 (0.44, 0.86) 0.71 (0.62, 0.80) 
175 0.15 (0.02, 0.35) 0.16 (0.02, 0.39) 

 
0.13 (0.02, 0.31) 0.13 (0.01, 0.34) -0.01 (-0.12, 0.11)  Mnif 0.69 (0.52, 0.83) 0.76 (0.67, 0.85)  

model 5 HF183 0.72 (0.55, 0.87) 0.83 (0.76, 0.90) 
156 0.24 (0.09, 0.43) 0.24 (0.10, 0.42) 

 
0.20 (0.06, 0.39) 0.23 (0.08, 0.42) 0.03 (-0.11, 0.17)  Mnif 0.71 (0.58, 0.84) 0.79 (0.70, 0.88)  

stored water          

bootstrap HF183 1 1 193 0.12 (0.04, 0.22) 0.10 (0.02, 0.20)  0.22 (0.10, 0.35) 0.19 (0.09, 0.30) -0.01 (-0.21, 0.19) 

model 1 HF183 1 1 193 0.14 (0.08, 0.23) 0.12 (0.06, 0.20)  0.19 (0.11, 0.29) 0.18 (0.10, 0.28) 0.01 (-0.09, 0.11) 

model 2 HF183 0.58 (0.34, 0.80) 0.84 (0.78, 0.89) 193 0.08 (0.01, 0.23) 0.07 (0.01, 0.22)  0.08 (0.01, 0.27) 0.07 (0.01, 0.26) 0.00 (-0.08, 0.09) 

model 3 HF183 0.65 (0.40, 0.85) 0.85 (0.79, 0.90) 193 0.07 (0.01, 0.20) 0.06 (0.01, 0.19)  0.08 (0.01, 0.25) 0.07 (0.01, 0.24) 0.00 (-0.08, 0.08) 

model 5 HF183 0.72 (0.55, 0.87) 0.83 (0.76, 0.90) 176 0.08 (0.01, 0.20) 0.09 (0.01, 0.21)  0.07 (0.01, 0.18) 0.08 (0.01, 0.20) 0.01 (-0.05, 0.08) 

latent compound          

m5 HF183 0.72 (0.55, 0.87) 0.83 (0.76, 0.90) 
113 0.26 (0.08, 0.55) 0.26 (0.08, 0.55) 

 
0.22 (0.06, 0.50) 0.25 (0.07, 0.53) 0.03 (-0.11, 0.18)  Mnif 0.71 (0.58, 0.84) 0.79 (0.70, 0.88)  
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S13. Prior distributions 

For all models, we sought to select regularizing ("weakly informative") priors where 

feasible. Regularizing priors impose soft constraints on parameter values, discouraging the 

model fitting algorithm from exploring extreme values that can reasonably be assumed 

implausible a priori.25 In addition to the practical benefit of often aiding model convergence, 

particularly for complex, high-dimensional models, regularization can help improve the precision 

of estimates for parameters for which the underlying data are somewhat noisy. This also has the 

effect of shrinking estimates towards a common value—often the null, in the case of regression 

coefficients, which mildly increases the strength of the evidence necessary to demonstrate a 

probable effect but provides the advantage of reducing false positives that can arise from typical 

sampling variation.25 While setting regularizing priors is subjective in the strictest sense, one 

generally possesses sufficient information to determine a broadly plausible range of parameter 

values that arguably are more readily accepted than the assumption implicit in flat ("non-

informative") priors that the range of potential parameter values is essentially infinite. 

 For the basic DID models used to assess the intervention effect on individual fecal 

indicators in separate sample types (Table S8), we included a compound-varying intercept that 

used the brms package default positive-constrained student-t prior with 3 degrees of freedom 

(df) and scale determined from the link-transformed data.39 Censored linear regression was used 

to estimate the intervention impact on the log10 concentrations of the two E. coli assays, cEC and 

EC23S, using regularizing normal priors with standard deviation (SD) = 5 on the population-

level intercept and SD = 2 on the predictor coefficients, including the DID terms.25,39,40 We 

estimated the effect of the intervention on human-associated indicator prevalence using logistic 

regression and the prevalence odds ratio (POR) as the measure of effect. Under the logistic link, 
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priors are defined on the continuous log-odds scale but are best understood on the probability 

scale, which is more intuitive but constrained between 0 and 1 prevalence.41 As such, the 

population-level intercept and predictor coefficients were given regularizing normal priors with 

SD = 1.5 and SD = 0.5, respectively, which on the probability scale corresponded to a ~95% 

chance the population-level prevalence was between 0.05 and 0.95 and an effect of up to ±0.23 

for each predictor at a population-level prevalence of 0.5.40 This represents a substantial effect 

size on the probability scale—a reduction in absolute risk from 50% to 27%, for example—

which would be unexpected in an environmental context.23 Furthermore, as a soft constraint, 

estimates could still exceed this effect size given sufficient and sufficiently strong data in support 

of a larger effect. 

The diagnostic accuracy-corrected models of human fecal contamination prevalence 

shared the same basic structure as the human-associated indicator prevalence model described 

above. Accordingly, we set the same priors for the population-level intercept, the DID terms, and 

the covariates in the adjustment set: 

 𝑦𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖) 

𝑝𝑖 = 𝜋𝑖 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝛽0 + 𝛽𝑃𝑃𝑖 + 𝛽𝑇𝑇𝑖 + 𝛽𝐷𝐼𝐷𝑃𝑖 × 𝑇𝑖 + 𝑿𝑖𝜸 

𝛽0  ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0,1.5) 

𝛽𝑃 , 𝛽𝑇 , 𝛽𝐷𝐼𝐷 , 𝜸 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0,0.5) 

Model 1 

 

Model 2 introduced parameters for sensitivity (𝑆𝑒) and specificity (𝑆𝑝), which required 

priors as well. Due the modest sample sizes of the local validation analysis, particularly of 

human samples (n=14), the use of non-informative priors risks unrealistically broad sensitivity 

and specificity estimates.23,42 As we possessed prior information on the typical ranges for 𝑆𝑒 and 



 S23 

𝑆𝑝 in resource-limited settings (Table S9), we used informative 𝑏𝑒𝑡𝑎(3,2) priors as soft 

constraints, corresponding to a 95% chance they fall between 0.19 and 0.93 on the probability 

scale, with mean 0.6. 

 𝑦𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖) 

𝑝𝑖 = 𝑆𝑒 × 𝜋𝑖 + (1 − 𝑆𝑝)(1 − 𝜋𝑖)  

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝛽0 + 𝛽𝑃𝑃𝑖 + 𝛽𝑇𝑇𝑖 + 𝛽𝐷𝐼𝐷𝑃𝑖 × 𝑇𝑖 + 𝑿𝑖𝜸 

𝑦𝑆𝑒~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑆𝑒 , 𝑆𝑒) 

 𝑦𝑆𝑝~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑆𝑝, 𝑆𝑝) 

𝑆𝑒, 𝑆𝑝 ~ 𝑏𝑒𝑡𝑎(3,2) 

𝛽0 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0,1.5); 𝛽𝑃 , 𝛽𝑇 , 𝛽𝐷𝐼𝐷 , 𝜸 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0,0.5) 

Model 2 

  

Because our validation sample set was small and performance estimates vary widely 

between studies, we fit a third model (Model 3) featuring a meta-analysis of indicator sensitivity 

and specificity. We assumed the log-odds of the sensitivity in the 𝑘th study, 𝑆𝑒[𝑘], were normally 

distributed with mean 𝜇𝑆𝑒 and SD 𝜎𝑆𝑒, with an equivalent structure for specificity. We assigned 

𝜇𝑆𝑒  and 𝜇𝑆𝑝 𝑛𝑜𝑟𝑚𝑎𝑙(0.5, 1) priors, which provided approximately equivalent coverage on the 

probability scale as the previous beta priors in Model 2, with weakly-informative 

𝑛𝑜𝑟𝑚𝑎𝑙+(0, 0.5) [half-normal] priors on 𝜎𝑆𝑒 and 𝜎𝑆𝑝, as discussed by Gelman and Carpenter.23 
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 𝑦𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖) 

𝑝𝑖 = 𝑆𝑒[1] × 𝜋𝑖 + (1 − 𝑆𝑝[1])(1 − 𝜋𝑖)  

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝛽0 + 𝛽𝑃𝑃𝑖 + 𝛽𝑇𝑇𝑖 + 𝛽𝐷𝐼𝐷𝑃𝑖 × 𝑇𝑖 + 𝑿𝑖𝜸 

𝑦[𝑘]
𝑆𝑒 ~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛[𝑘]

𝑆𝑒 , 𝑆𝑒[𝑘]); 𝑦[𝑘]
𝑆𝑝~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛[𝑘]

𝑆𝑝 , 𝑆𝑝[𝑘])  

𝑙𝑜𝑔𝑖𝑡(𝑆𝑒[𝑘])~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑆𝑒 , 𝜎𝑆𝑒 );  𝑙𝑜𝑔𝑖𝑡(𝑆𝑝[𝑘])~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇 𝑆𝑝, 𝜎𝑆𝑝) 

𝜇𝑆𝑒 , 𝜇 𝑆𝑝 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0.5, 1) 

 𝜎𝑆𝑒 , 𝜎𝑆𝑝~𝑛𝑜𝑟𝑚𝑎𝑙+(0, 0.5) 

𝛽0  ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0,1.5);  𝛽𝑃 , 𝛽𝑇 , 𝛽𝐷𝐼𝐷 , 𝜸 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0,0.5) 

Model 3 

  

Model 4 followed the same structure as Model 3, but incorporated two different fecal 

indicators, represented as 𝑦𝑖
[𝑎𝑠𝑠𝑎𝑦]

, with a corresponding duplication of the sensitivity and 

specificity model components. All priors remain the same as Model 3. 

 𝑦𝑖
[𝑎𝑠𝑠𝑎𝑦]

~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝𝑖
[𝑎𝑠𝑠𝑎𝑦]

) 

𝑝𝑖
[𝑎𝑠𝑠𝑎𝑦]

= 𝑆𝑒[1]
[𝑎𝑠𝑠𝑎𝑦]

× 𝜋𝑖 + (1 − 𝑆𝑝[1]
[𝑎𝑠𝑠𝑎𝑦]

) (1 − 𝜋𝑖)  

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝛽0 + 𝛽𝑃𝑃𝑖 + 𝛽𝑇𝑇𝑖 + 𝛽𝐷𝐼𝐷𝑃𝑖 × 𝑇𝑖 + 𝑿𝑖𝜸 

𝑦[𝑘]
[𝑎𝑠𝑠𝑎𝑦],𝑆𝑒~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛[𝑘]

[𝑎𝑠𝑠𝑎𝑦],𝑆𝑒,, 𝑆𝑒[𝑘]
[𝑎𝑠𝑠𝑎𝑦]

) ; 𝑦[𝑘]
[𝑎𝑠𝑠𝑎𝑦],𝑆𝑝~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛[𝑘]

[𝑎𝑠𝑠𝑎𝑦],𝑆𝑝,, 𝑆𝑝[𝑘]
[𝑎𝑠𝑠𝑎𝑦]

)  

𝑙𝑜𝑔𝑖𝑡 (𝑆𝑒[𝑘]
[𝑎𝑠𝑠𝑎𝑦]

) ~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇 [𝑎𝑠𝑠𝑎𝑦],𝑆𝑒 , 𝜎[𝑎𝑠𝑠𝑎𝑦],𝑆𝑒) 

𝑙𝑜𝑔𝑖𝑡 (𝑆𝑝[𝑘]
[𝑎𝑠𝑠𝑎𝑦]

) ~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇 [𝑎𝑠𝑠𝑎𝑦],𝑆𝑝, 𝜎[𝑎𝑠𝑠𝑎𝑦],𝑆𝑝) 

𝜇 [𝑎𝑠𝑠𝑎𝑦],𝑆𝑒 , 𝜇 [𝑎𝑠𝑠𝑎𝑦],𝑆𝑝 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0.5, 1) 

 𝜎[𝑎𝑠𝑠𝑎𝑦],𝑆𝑒 , 𝜎[𝑎𝑠𝑠𝑎𝑦],𝑆𝑝~𝑛𝑜𝑟𝑚𝑎𝑙+(0, 0.5) 

𝛽0  ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0,1.5);  𝛽𝑃 , 𝛽𝑇 , 𝛽𝐷𝐼𝐷 , 𝜸 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0,0.5) 

Model 4 

  

Finally, Model 5 included multiple sample types with type-specific prevalence variables, 

𝜋𝑖
[𝑡𝑦𝑝𝑒]

, derived from sample-type specific intercepts 𝛼[𝑡𝑦𝑝𝑒] and a shared compound-varying 
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intercept 𝛼[𝑗]
𝑐𝑜𝑚𝑝

 corresponding to the 𝑗the compound that replaced the previously fixed, 

population-level intercept 𝛽0. As before, all 𝛽 and 𝛾 parameters were given normal priors with 

SD = 0.5. We assumed 𝛼[𝑗]
𝑐𝑜𝑚𝑝~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑐𝑜𝑚𝑝, 𝜎𝑐𝑜𝑚𝑝) and 𝛼[𝑡𝑦𝑝𝑒]~𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑡𝑦𝑝𝑒), with 

half-normal, SD = 0.5 priors on 𝜎𝑐𝑜𝑚𝑝 and 𝜎𝑡𝑦𝑝𝑒 and the same 𝑛𝑜𝑟𝑚𝑎𝑙(0, 1.5) prior on 𝜇𝑐𝑜𝑚𝑝 

used for the fixed intercept 𝛽0 in previous models.  

 𝑦𝑖
[𝑎𝑠𝑠𝑎𝑦,𝑡𝑦𝑝𝑒]

~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝𝑖
[𝑎𝑠𝑠𝑎𝑦,𝑡𝑦𝑝𝑒]

) 

𝑝𝑖
[𝑎𝑠𝑠𝑎𝑦,𝑡𝑦𝑝𝑒]

= 𝑆𝑒[1]
[𝑎𝑠𝑠𝑎𝑦,𝑡𝑦𝑝𝑒]

× 𝜋𝑖
[𝑡𝑦𝑝𝑒]

+ (1 − 𝑆𝑝[1]
[𝑎𝑠𝑠𝑎𝑦,𝑡𝑦𝑝𝑒]

) (1 − 𝜋𝑖
[𝑡𝑦𝑝𝑒]

)  

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖
[𝑡𝑦𝑝𝑒]

) = 𝛼[𝑡𝑦𝑝𝑒] +  𝑿𝑖
[𝑡𝑦𝑝𝑒]

𝜸[𝑡𝑦𝑝𝑒] +  𝑙𝑜𝑔𝑖𝑡(𝜋[𝑗]
𝑐𝑜𝑚𝑝) 

𝑙𝑜𝑔𝑖𝑡(𝜋[𝑗]
𝑐𝑜𝑚𝑝) = 𝛼[𝑗]

𝑐𝑜𝑚𝑝 + 𝛽𝑃𝑃[𝑗] + 𝛽𝑇𝑇[𝑗] + 𝛽𝐷𝐼𝐷𝑃[𝑗] × 𝑇[𝑗] + 𝑿[𝑗]
𝑐𝑜𝑚𝑝𝜸𝑐𝑜𝑚𝑝  

𝑦[𝑘]
[𝑎𝑠𝑠𝑎𝑦],𝑆𝑒~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛[𝑘]

[𝑎𝑠𝑠𝑎𝑦],𝑆𝑒,, 𝑆𝑒[𝑘]
[𝑎𝑠𝑠𝑎𝑦]

) ; 𝑦[𝑘]
[𝑎𝑠𝑠𝑎𝑦],𝑆𝑝~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛[𝑘]

[𝑎𝑠𝑠𝑎𝑦],𝑆𝑝,, 𝑆𝑝[𝑘]
[𝑎𝑠𝑠𝑎𝑦]

)  

𝑙𝑜𝑔𝑖𝑡 (𝑆𝑒[𝑘]
[𝑎𝑠𝑠𝑎𝑦]

) ~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇 [𝑎𝑠𝑠𝑎𝑦],𝑆𝑒 , 𝜎[𝑎𝑠𝑠𝑎𝑦],𝑆𝑒) 

𝑙𝑜𝑔𝑖𝑡 (𝑆𝑝[𝑘]
[𝑎𝑠𝑠𝑎𝑦]

) ~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇 [𝑎𝑠𝑠𝑎𝑦],𝑆𝑝, 𝜎[𝑎𝑠𝑠𝑎𝑦],𝑆𝑝) 

𝛼[𝑗]
𝑐𝑜𝑚𝑝~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑐𝑜𝑚𝑝, 𝜎𝑐𝑜𝑚𝑝); 𝛼[𝑡𝑦𝑝𝑒]~𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑡𝑦𝑝𝑒) 

𝜇 [𝑎𝑠𝑠𝑎𝑦],𝑆𝑒 , 𝜇 [𝑎𝑠𝑠𝑎𝑦],𝑆𝑝 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0.5, 1); 𝜇𝑐𝑜𝑚𝑝 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0,1.5) 

 𝜎[𝑡𝑦𝑝𝑒], 𝜎[𝑎𝑠𝑠𝑎𝑦],𝑆𝑒 , 𝜎[𝑎𝑠𝑠𝑎𝑦],𝑆𝑝~𝑛𝑜𝑟𝑚𝑎𝑙+(0, 0.5) 

𝛽𝑃 , 𝛽𝑇 , 𝛽𝐷𝐼𝐷 , 𝜸[𝑡𝑦𝑝𝑒], 𝜸𝑐𝑜𝑚𝑝 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0,0.5) 

Model 5 
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S14. Stan code 

S14.1. Model 1 

// Model 1: 

// single sample type, single target 

// no correction for sensitivity/specificity 

// no compound-varying intercepts 

 

data{ 

// sample data 

  int<lower = 0> N_samp;  // number of sample observations 

  int<lower = 0, upper = 1> y_samp[N_samp];  // sample observations 

  vector<lower = 0, upper = 1>[N_samp] phase;  // survey phase 

  vector<lower = 0, upper = 1>[N_samp] treat;  // treatment arm 

  vector<lower = 0, upper = 1>[N_samp] did;  // phase*treat interaction 

  int<lower = 0> K;  // number of predictors 

  matrix[N_samp, K] X;  // predictor values 

 

// prior predictive check? 

  int<lower = 0, upper = 1> prior_only;  // toggle on to sample priors only 

} 

 

parameters{ 

// linear model parameters 

  real b0;  // intercept 

  real bP;  // phase 

  real bT;  // treatment 

  real bD;  // DID 

  vector[K] g;  // predictor coefficients 

} 

 

model{ 

// linear model for probability of human contamination 

  vector[N_samp] p_samp = inv_logit(b0 + bP*phase + bT*treat + bD*did + X*g); 

 

// Likelihood 

  if(prior_only == 0){ 

    y_samp ~ binomial(1, p_samp); 

  } 

 

// linear model priors 

  b0 ~ normal(0, 1.5); 

  bD ~ normal(0, 0.5); 

  bT ~ normal(0, 0.5); 

  bP ~ normal(0, 0.5); 

  g ~ normal(0, 0.5); 

} 

 

generated quantities{ 

// posterior predictions (or prior predictions, if prior_only == 1) 

// define predicted variables 

  int<lower = 0, upper = 1> y_pred[N_samp];  // predicted sample observations 

  int<lower = 0> n_pos;  // number of predicted positives 

  real<lower = 0, upper = 1> p_samp_avg;  // mean target prevalence in samples 
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// calculate human contamination probability 

  vector[N_samp] p_samp_sim = inv_logit(b0 + bP*phase + bT*treat + bD*did + X*g); 

 

// predict sample observations   

  y_pred = binomial_rng(1, p_samp_sim); 

  n_pos = sum(y_pred);   

 

// summarise prevalence calculations 

  p_samp_avg = mean(p_samp_sim); 

} 
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S14.2. Model 2 

// Model 2: 

// single sample type, single target 

// diagnostic performance data from this study only 

// no compound-varying intercepts 

 

data{ 

// sample data 

  int<lower = 0> N_samp;  // number of sample observations 

  int<lower = 0, upper = 1> y_samp[N_samp];  // sample observations 

  vector<lower = 0, upper = 1>[N_samp] phase;  // survey phase 

  vector<lower = 0, upper = 1>[N_samp] treat;  // treatment arm 

  vector<lower = 0, upper = 1>[N_samp] did;  // phase*treat interaction 

  int<lower = 0> K;  // number of predictors 

  matrix[N_samp, K] X;  // predictor values 

   

// sens/spec data   

  int<lower = 0> y_spec;  // number of true negatives observed 

  int<lower = 0> n_spec;  // number of non-target samples 

  int<lower = 0> y_sens;  // number of true positives observed 

  int<lower = 0> n_sens;  // number of target samples 

   

// prior predictive check? 

  int<lower = 0, upper = 1> prior_only;  // toggle on to sample priors only 

} 

 

parameters{ 

// linear model parameters 

  real b0;  // intercept 

  real bP;  // phase 

  real bT;  // treatment 

  real bD;  // DID 

  vector[K] g;  // predictor coefficients 

 

// diagnostic performance parameters 

  real<lower=0, upper=1> spec;  // specificity 

  real<lower=0, upper=1> sens;  // sensitivity 

} 

 

model{ 

// linear model for probability of human contamination 

  vector[N_samp] p = inv_logit(b0 + bP*phase + bT*treat + bD*did + X*g); 

 

// adjust for sens/spec 

  vector[N_samp] p_samp = sens * p + (1 - spec) * (1 - p); 

   

// Likelihoods 

  if(prior_only == 0){ 

  // samples   

    y_samp ~ binomial(1, p_samp); 

     

  // validation studies  

    y_spec ~ binomial(n_spec, spec); 

    y_sens ~ binomial(n_sens, sens); 

  } 



 S29 

 

// linear model priors 

  b0 ~ normal(0, 1.5); 

  bD ~ normal(0, 0.5); 

  bT ~ normal(0, 0.5); 

  bP ~ normal(0, 0.5); 

  g ~ normal(0, 0.5); 

   

// validation priors 

  sens ~ beta(3, 2); 

  spec ~ beta(3, 2); 

} 

 

generated quantities{ 

// posterior predictions (or prior predictions, if prior_only == 1) 

// define predicted variables 

  int<lower = 0, upper = 1> y_pred[N_samp];  // predicted sample observations 

  int<lower = 0> n_pos;  // number of predicted positives 

  real<lower = 0, upper = 1> p_avg;  //  mean human contamination prevalence 

  real<lower = 0, upper = 1> p_samp_avg;  // mean target prevalence in samples 

 

// calculate human contamination probability 

  vector[N_samp] p_sim = inv_logit(b0 + bP*phase + bT*treat + bD*did + X*g); 

 

// adjust for sens/spec 

  vector[N_samp] p_samp_sim = sens * p_sim + (1 - spec) * (1 - p_sim); 

 

// predict sample observations   

  y_pred = binomial_rng(1, p_samp_sim); 

  n_pos = sum(y_pred); 

   

// summarise prevalence calculations 

  p_avg = mean(p_sim); 

  p_samp_avg = mean(p_samp_sim); 

} 
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S14.3. Model 3 

// Model 3: 

// single sample type, single target 

// diagnostic performance meta-analysis 

// no compound-varying intercepts 

 

data{ 

// sample data 

  int<lower = 0> N_samp;  // number of sample observations 

  int<lower = 0, upper = 1> y_samp[N_samp];  // sample observations 

  vector<lower = 0, upper = 1>[N_samp] phase;  // survey phase 

  vector<lower = 0, upper = 1>[N_samp] treat;  // treatment arm 

  vector<lower = 0, upper = 1>[N_samp] did;  // phase*treat interaction 

  int<lower = 0> K;  // number of predictors 

  matrix[N_samp, K] X;  // predictor values 

   

// sens/spec data   

  int<lower = 0> J_spec; 

  int<lower = 0> y_spec[J_spec]; 

  int<lower = 0> n_spec[J_spec]; 

  int<lower = 0> J_sens; 

  int<lower = 0> y_sens[J_sens]; 

  int<lower = 0> n_sens[J_sens]; 

   

// prior predictive check? 

  int<lower = 0, upper = 1> prior_only;  // toggle on to sample priors only 

} 

 

parameters{ 

// linear model parameters 

  real b0;  // intercept 

  real bP;  // phase 

  real bT;  // treatment 

  real bD;  // DID 

  vector[K] g;  // predictor coefficients 

 

// sens/spec meta-analysis parameters 

  real mu_logit_spec;  // mean spec on the logit scale 

  real mu_logit_sens; 

  real<lower = 0> sigma_logit_spec;  // spec SD on logit scale 

  real<lower = 0> sigma_logit_sens; 

  // non-centered parameterization of logit-transformed sens/spec 

  vector<offset = mu_logit_spec, multiplier = sigma_logit_spec>[J_spec] logit_spec; 

  vector<offset = mu_logit_sens, multiplier = sigma_logit_sens>[J_sens] logit_sens; 

} 

 

transformed parameters{ 

// recover sens/spec on probability scale 

  vector[J_spec] spec = inv_logit(logit_spec); 

  vector[J_sens] sens = inv_logit(logit_sens); 

} 

 

model{ 

// linear model for probability of human contamination 

  vector[N_samp] p = inv_logit(b0 + bP*phase + bT*treat + bD*did + X*g); 
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// adjust for sens/spec 

  vector[N_samp] p_samp = sens[1] * p + (1 - spec[1]) * (1 - p); 

   

// Likelihoods 

  if(prior_only == 0){ 

  // samples   

    y_samp ~ binomial(1, p_samp); 

     

  // validation studies  

    y_spec ~ binomial(n_spec, spec); 

    y_sens ~ binomial(n_sens, sens); 

  } 

 

// linear model priors 

  b0 ~ normal(0, 1.5); 

  bD ~ normal(0, 0.5); 

  bT ~ normal(0, 0.5); 

  bP ~ normal(0, 0.5); 

  g ~ normal(0, 0.5); 

   

// validation priors 

  logit_spec ~ normal(mu_logit_spec, sigma_logit_spec);  

  logit_sens ~ normal(mu_logit_sens, sigma_logit_sens); 

  sigma_logit_spec ~ normal(0, .5); 

  sigma_logit_sens ~ normal(0, .5); 

  mu_logit_spec ~ normal(.5, 1); 

  mu_logit_sens ~ normal(.5, 1); 

} 

 

generated quantities{ 

// posterior predictions (or prior predictions, if prior_only == 1) 

// define predicted variables 

  int<lower = 0, upper = 1> y_pred[N_samp];  // predicted sample observations 

  int<lower = 0> n_pos;  // number of predicted positives 

  real<lower = 0, upper = 1> p_avg;  //  mean human contamination prevalence 

  real<lower = 0, upper = 1> p_samp_avg;  // mean target prevalence in samples 

 

// calculate human contamination probability 

  vector[N_samp] p_sim = inv_logit(b0 + bP*phase + bT*treat + bD*did + X*g); 

 

// adjust for sens/spec 

  vector[N_samp] p_samp_sim = sens[1] * p_sim + (1 - spec[1]) * (1 - p_sim); 

 

// predict sample observations   

  y_pred = binomial_rng(1, p_samp_sim); 

  n_pos = sum(y_pred); 

   

// summarise prevalence calculations 

  p_avg = mean(p_sim); 

  p_samp_avg = mean(p_samp_sim); 

} 
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S14.4. Model 4 

// Model 4:  

// single sample type, two targets 

// diagnostic performance meta-analysis 

// no compound-varying intercepts 

 

data{ 

// sample data 

  int<lower = 0> N_samp;  // number of sample observations 

  int<lower = 0, upper = 1> y_hf[N_samp];  // HF183 observations 

  int<lower = 0, upper = 1> y_mn[N_samp];  // Mnif observations 

  vector<lower = 0, upper = 1>[N_samp] phase;  // survey phase 

  vector<lower = 0, upper = 1>[N_samp] treat;  // treatment arm 

  vector<lower = 0, upper = 1>[N_samp] did;  // phase*treat interaction 

  int<lower = 0> K;  // number of predictors 

  matrix[N_samp, K] X;  // predictor values 

   

// sens/spec data   

  int<lower = 0> J_spec_hf; 

  int<lower = 0> y_spec_hf[J_spec_hf]; 

  int<lower = 0> n_spec_hf[J_spec_hf]; 

  int<lower = 0> J_sens_hf; 

  int<lower = 0> y_sens_hf[J_sens_hf]; 

  int<lower = 0> n_sens_hf[J_sens_hf]; 

  int<lower = 0> J_spec_mn; 

  int<lower = 0> y_spec_mn[J_spec_mn]; 

  int<lower = 0> n_spec_mn[J_spec_mn]; 

  int<lower = 0> J_sens_mn; 

  int<lower = 0> y_sens_mn[J_sens_mn]; 

  int<lower = 0> n_sens_mn[J_sens_mn]; 

   

// prior predictive check? 

  int<lower = 0, upper = 1> prior_only;  // toggle on to sample priors only 

} 

 

parameters{ 

// linear model parameters 

  real b0;  // intercept 

  real bP;  // phase 

  real bT;  // treatment 

  real bD;  // DID 

  vector[K] g;  // predictor coefficients 

 

// sens/spec meta-analysis parameters 

  real mu_logit_spec_hf;  // mean spec for HF183 on the logit scale 

  real mu_logit_sens_hf; 

  real mu_logit_spec_mn; 

  real mu_logit_sens_mn; 

  real<lower = 0> sigma_logit_spec_hf;  // spec SD on logit scale 

  real<lower = 0> sigma_logit_sens_hf; 

  real<lower = 0> sigma_logit_spec_mn; 

  real<lower = 0> sigma_logit_sens_mn; 

  // non-centered parameterization of logit-transformed sens/spec for each target 

  vector<offset = mu_logit_spec_hf, multiplier = sigma_logit_spec_hf>[J_spec_hf] 

logit_spec_hf; 
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  vector<offset = mu_logit_sens_hf, multiplier = sigma_logit_sens_hf>[J_sens_hf] 

logit_sens_hf; 

  vector<offset = mu_logit_spec_mn, multiplier = sigma_logit_spec_mn>[J_spec_mn] 

logit_spec_mn; 

  vector<offset = mu_logit_sens_mn, multiplier = sigma_logit_sens_mn>[J_sens_mn] 

logit_sens_mn; 

} 

 

transformed parameters{ 

// recover sens/spec on probability scale 

  vector[J_spec_hf] spec_hf = inv_logit(logit_spec_hf); 

  vector[J_sens_hf] sens_hf = inv_logit(logit_sens_hf); 

  vector[J_spec_mn] spec_mn = inv_logit(logit_spec_mn); 

  vector[J_sens_mn] sens_mn = inv_logit(logit_sens_mn); 

} 

 

model{ 

// linear model for probability of human contamination 

  vector[N_samp] p = inv_logit(b0 + bP*phase + bT*treat + bD*did + X*g); 

 

// adjust for sens/spec 

  // by convention the first sens/spec element represents this current study 

  vector[N_samp] p_hf = sens_hf[1] * p + (1 - spec_hf[1]) * (1 - p); 

  vector[N_samp] p_mn = sens_mn[1] * p + (1 - spec_mn[1]) * (1 - p); 

   

// Likelihoods 

  if(prior_only == 0){ 

  // samples   

    y_hf ~ binomial(1, p_hf); 

    y_mn ~ binomial(1, p_mn); 

     

  // validation studies  

    y_spec_hf ~ binomial(n_spec_hf, spec_hf); 

    y_sens_hf ~ binomial(n_sens_hf, sens_hf); 

    y_spec_mn ~ binomial(n_spec_mn, spec_mn); 

    y_sens_mn ~ binomial(n_sens_mn, sens_mn); 

  } 

 

// linear model priors 

  b0 ~ normal(0, 1.5); 

  bD ~ normal(0, 0.5); 

  bT ~ normal(0, 0.5); 

  bP ~ normal(0, 0.5); 

  g ~ normal(0, 0.5); 

   

// validation priors 

  logit_spec_hf ~ normal(mu_logit_spec_hf, sigma_logit_spec_hf);  

  logit_sens_hf ~ normal(mu_logit_sens_hf, sigma_logit_sens_hf); 

  sigma_logit_spec_hf ~ normal(0, .5); 

  sigma_logit_sens_hf ~ normal(0, .5); 

  mu_logit_spec_hf ~ normal(.5, 1); 

  mu_logit_sens_hf ~ normal(.5, 1); 

  logit_spec_mn ~ normal(mu_logit_spec_mn, sigma_logit_spec_mn);  

  logit_sens_mn ~ normal(mu_logit_sens_mn, sigma_logit_sens_mn); 

  sigma_logit_spec_mn ~ normal(0, .5); 

  sigma_logit_sens_mn ~ normal(0, .5); 

  mu_logit_spec_mn ~ normal(.5, 1); 
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  mu_logit_sens_mn ~ normal(.5, 1); 

} 

 

generated quantities{ 

// posterior predictions (or prior predictions, if prior_only == 1) 

// define predicted variables 

  int<lower = 0, upper = 1> y_pred_hf[N_samp];  // predicted HF183 observations 

  int<lower = 0> n_pos_hf;  // number of predicted HF183 positives 

  real<lower = 0, upper = 1> p_samp_avg_hf;  // mean HF183 prevalence in samples 

  int<lower = 0, upper = 1> y_pred_mn[N_samp];  // predicted Mnif observations 

  int<lower = 0> n_pos_mn;  // number of predicted Mnif positives 

  real<lower = 0, upper = 1> p_samp_avg_mn;  // mean Mnif prevalence in samples 

  real<lower = 0, upper = 1> p_avg;  //  mean human contamination prevalence 

 

// calculate human contamination probability 

  vector[N_samp] p_sim = inv_logit(b0 + bP*phase + bT*treat + bD*did + X*g); 

 

// adjust for sens/spec 

  vector[N_samp] p_hf_sim = sens_hf[1] * p_sim + (1 - spec_hf[1]) * (1 - p_sim); 

  vector[N_samp] p_mn_sim = sens_mn[1] * p_sim + (1 - spec_mn[1]) * (1 - p_sim); 

 

// predict sample observations   

  y_pred_hf = binomial_rng(1, p_hf_sim); 

  n_pos_hf = sum(y_pred_hf); 

  y_pred_mn = binomial_rng(1, p_mn_sim); 

  n_pos_mn = sum(y_pred_mn); 

   

// summarise prevalence calculations 

  p_avg = mean(p_sim); 

  p_samp_avg_hf = mean(p_hf_sim); 

  p_samp_avg_mn = mean(p_mn_sim); 

} 
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S14.5. Model 5 

// Model 5: 

// three sample types, two targets 

// diagnostic performance meta-analysis 

// compound-varying intercept, type-varying intercept 

 

data{ 

  int<lower = 0> N_type;  // number of sample types considered 

    

// compound data 

  int<lower = 0> J_comp;  // number of unique compounds 

  int<lower = 0> N_comp;  // number of compound observations 

  int<lower = 1, upper = J_comp> comp[N_comp]; // compound index 

  int<lower = 0> K_comp;  // number of compound-level predictors 

  matrix[N_comp, K_comp] X_comp;  // compound-level predictors 

   

// hw sample data 

  int<lower = 0> N_hw;  // number of compound observations 

  int<lower = 0, upper = 1> y_hw_hf[N_hw];  // hw HF183 observations 

  // int<lower = 0, upper = 1> y_hw_mn[N_hw];  // no hw Mnif observations 

  int<lower = 1, upper = J_comp> comp_hw[N_hw]; // hw compound index 

  int<lower = 0> K_hw;  // number of hw sample-level predictors 

  matrix[N_hw, K_hw] X_hw;  // hw predictors 

 

// ds sample data  

  int<lower = 0> N_ds;  // number of compound observations 

  int<lower = 0, upper = 1> y_ds_hf[N_ds];  // ds HF183 observations 

  int<lower = 0, upper = 1> y_ds_mn[N_ds];  // ds Mnif observations 

  int<lower = 1, upper = J_comp> comp_ds[N_ds]; // ds compound index 

  int<lower = 0> K_ds;  // number of ds sample-level predictors 

  matrix[N_ds, K_ds] X_ds;  // ds predictors 

 

// ls sample data   

  int<lower = 0> N_ls;  // number of compound observations 

  int<lower = 0, upper = 1> y_ls_hf[N_ls];  // ls HF183 observations 

  int<lower = 0, upper = 1> y_ls_mn[N_ls];  // ls Mnif observations 

  int<lower = 1, upper = J_comp> comp_ls[N_ls]; // ls compound index 

  int<lower = 0> K_ls;  // number of ls sample-level predictors 

  matrix[N_ls, K_ls] X_ls;  // ls predictors 

 

// sens/spec data   

  int<lower = 0> J_spec_hf; 

  int<lower = 0> y_spec_hf[J_spec_hf]; 

  int<lower = 0> n_spec_hf[J_spec_hf]; 

  int<lower = 0> J_sens_hf; 

  int<lower = 0> y_sens_hf[J_sens_hf]; 

  int<lower = 0> n_sens_hf[J_sens_hf]; 

  int<lower = 0> J_spec_mn; 

  int<lower = 0> y_spec_mn[J_spec_mn]; 

  int<lower = 0> n_spec_mn[J_spec_mn]; 

  int<lower = 0> J_sens_mn; 

  int<lower = 0> y_sens_mn[J_sens_mn]; 

  int<lower = 0> n_sens_mn[J_sens_mn]; 

   

// prior predictive check? 
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  int<lower = 0, upper = 1> prior_only; 

} 

 

parameters{ 

// compound prevalence linear model parameters 

  vector[K_comp] b_comp; // compound-level coefficients 

  real mu_comp;  // mean of compound-varying intercept 

  real<lower = 0> sigma_comp;  // SD of compound-varying intercept 

  vector<offset = mu_comp, multiplier = sigma_comp>[J_comp] a_comp; 

 

// sample-level parameters 

  vector[K_hw] g_hw;  // hw predictor coefficients 

  vector[K_ds] g_ds;  // ds predictor coefficients 

  vector[K_ls] g_ls;  // ls predictor coefficients 

  real<lower = 0> sigma_type;  // SD of sample differences 

  vector<multiplier = sigma_type>[N_type] a_type;  // sample type-varying intercept 

   

// sens/spec meta-analysis parameters 

  real mu_logit_spec_hf; 

  real mu_logit_sens_hf; 

  real mu_logit_spec_mn; 

  real mu_logit_sens_mn; 

  real<lower = 0> sigma_logit_spec_hf; 

  real<lower = 0> sigma_logit_sens_hf; 

  real<lower = 0> sigma_logit_spec_mn; 

  real<lower = 0> sigma_logit_sens_mn; 

  vector<offset = mu_logit_spec_hf, multiplier = sigma_logit_spec_hf>[J_spec_hf] 

logit_spec_hf; 

  vector<offset = mu_logit_sens_hf, multiplier = sigma_logit_sens_hf>[J_sens_hf] 

logit_sens_hf; 

  vector<offset = mu_logit_spec_mn, multiplier = sigma_logit_spec_mn>[J_spec_mn] 

logit_spec_mn; 

  vector<offset = mu_logit_sens_mn, multiplier = sigma_logit_sens_mn>[J_sens_mn] 

logit_sens_mn; 

} 

 

transformed parameters{ 

  vector[J_spec_hf] spec_hf = inv_logit(logit_spec_hf); 

  vector[J_sens_hf] sens_hf = inv_logit(logit_sens_hf); 

  vector[J_spec_mn] spec_mn = inv_logit(logit_spec_mn); 

  vector[J_sens_mn] sens_mn = inv_logit(logit_sens_mn); 

} 

 

model{ 

// linear model for compound contamination 

  vector[N_comp] logit_p_comp = a_comp[comp] + X_comp * b_comp; 

   

// linear models for sample-type specific prevalence 

  vector[N_hw] p_hw = inv_logit(logit_p_comp[comp_hw] + a_type[1] + X_hw * g_hw); 

  vector[N_ds] p_ds = inv_logit(logit_p_comp[comp_ds] + a_type[2] + X_ds * g_ds); 

  vector[N_ls] p_ls = inv_logit(logit_p_comp[comp_ls] + a_type[3] + X_ls * g_ls);                

   

// adjust for sens/spec 

  vector[N_hw] p_hw_hf = sens_hf[1] * p_hw + (1 - spec_hf[1]) * (1 - p_hw); 

  vector[N_hw] p_hw_mn = sens_mn[1] * p_hw + (1 - spec_mn[1]) * (1 - p_hw); 

  vector[N_ds] p_ds_hf = sens_hf[1] * p_ds + (1 - spec_hf[1]) * (1 - p_ds); 

  vector[N_ds] p_ds_mn = sens_mn[1] * p_ds + (1 - spec_mn[1]) * (1 - p_ds); 
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  vector[N_ls] p_ls_hf = sens_hf[1] * p_ls + (1 - spec_hf[1]) * (1 - p_ls); 

  vector[N_ls] p_ls_mn = sens_mn[1] * p_ls + (1 - spec_mn[1]) * (1 - p_ls); 

   

// Likelihoods 

  if(prior_only == 0){ 

  // samples   

    y_hw_hf ~ binomial(1, p_hw_hf); 

    // y_hw_mn ~ binomial(1, p_hw_mn); no Mnif for HW samples 

    y_ds_hf ~ binomial(1, p_ds_hf); 

    y_ds_mn ~ binomial(1, p_ds_mn); 

    y_ls_hf ~ binomial(1, p_ls_hf); 

    y_ls_mn ~ binomial(1, p_ls_mn); 

     

  // validation studies  

    y_spec_hf ~ binomial(n_spec_hf, spec_hf); 

    y_sens_hf ~ binomial(n_sens_hf, sens_hf); 

    y_spec_mn ~ binomial(n_spec_mn, spec_mn); 

    y_sens_mn ~ binomial(n_sens_mn, sens_mn); 

  } 

 

// sample priors 

  // compound-level 

  a_comp ~ normal(mu_comp, sigma_comp); 

  mu_comp ~ normal(0, 1.5); 

  sigma_comp ~ normal(0, 0.5); 

  b_comp ~ normal(0, 0.5); 

   

  // sample-level 

  a_type ~ normal(0, sigma_type); 

  sigma_type ~ normal(0, 0.5); 

  g_hw ~ normal(0, 0.5); 

  g_ds ~ normal(0, 0.5); 

  g_ls ~ normal(0, 0.5); 

 

// validation priors 

  logit_spec_hf ~ normal(mu_logit_spec_hf, sigma_logit_spec_hf);  

  logit_sens_hf ~ normal(mu_logit_sens_hf, sigma_logit_sens_hf); 

  sigma_logit_spec_hf ~ normal(0, .5); 

  sigma_logit_sens_hf ~ normal(0, .5); 

  mu_logit_spec_hf ~ normal(.5, 1); 

  mu_logit_sens_hf ~ normal(.5, 1); 

  logit_spec_mn ~ normal(mu_logit_spec_mn, sigma_logit_spec_mn);  

  logit_sens_mn ~ normal(mu_logit_sens_mn, sigma_logit_sens_mn); 

  sigma_logit_spec_mn ~ normal(0, .5); 

  sigma_logit_sens_mn ~ normal(0, .5); 

  mu_logit_spec_mn ~ normal(.5, 1); 

  mu_logit_sens_mn ~ normal(.5, 1); 

} 

 

generated quantities{ 

// simulated sample outcome containers   

  int y_hw_hf_sim[N_hw]; 

  int y_hw_mn_sim[N_hw]; 

  int y_ds_hf_sim[N_ds]; 

  int y_ds_mn_sim[N_ds]; 

  int y_ls_hf_sim[N_ls]; 

  int y_ls_mn_sim[N_ls]; 
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  int n_pos_hw_hf; 

  int n_pos_hw_mn; 

  int n_pos_ds_hf; 

  int n_pos_ds_mn; 

  int n_pos_ls_hf; 

  int n_pos_ls_mn; 

  real<lower = 0, upper = 1> p_avg_comp; 

  real<lower = 0, upper = 1> p_avg_hw; 

  real<lower = 0, upper = 1> p_avg_ds; 

  real<lower = 0, upper = 1> p_avg_ls; 

  real<lower = 0, upper = 1> p_samp_avg_hw_hf; 

  real<lower = 0, upper = 1> p_samp_avg_hw_mn; 

  real<lower = 0, upper = 1> p_samp_avg_ds_hf; 

  real<lower = 0, upper = 1> p_samp_avg_ds_mn; 

  real<lower = 0, upper = 1> p_samp_avg_ls_hf; 

  real<lower = 0, upper = 1> p_samp_avg_ls_mn; 

   

// simulate type-specific probabilities 

  vector[N_comp] logit_p_comp_sim = a_comp[comp] + X_comp * b_comp; 

  vector[N_comp] p_comp_sim = inv_logit(logit_p_comp_sim); 

  vector[N_hw] p_hw_sim = inv_logit(logit_p_comp_sim[comp_hw] + a_type[1] + X_hw * 

g_hw); 

  vector[N_ds] p_ds_sim = inv_logit(logit_p_comp_sim[comp_ds] + a_type[2] + X_ds * 

g_ds); 

  vector[N_ls] p_ls_sim = inv_logit(logit_p_comp_sim[comp_ls] + a_type[3] + X_ls * 

g_ls);                              

// adjust simulations for sens/spec 

  vector[N_hw] p_hw_hf_sim = sens_hf[1] * p_hw_sim + (1 - spec_hf[1]) * (1 - 

p_hw_sim); 

  vector[N_hw] p_hw_mn_sim = sens_mn[1] * p_hw_sim + (1 - spec_mn[1]) * (1 - 

p_hw_sim); 

  vector[N_ds] p_ds_hf_sim = sens_hf[1] * p_ds_sim + (1 - spec_hf[1]) * (1 - 

p_ds_sim); 

  vector[N_ds] p_ds_mn_sim = sens_mn[1] * p_ds_sim + (1 - spec_mn[1]) * (1 - 

p_ds_sim); 

  vector[N_ls] p_ls_hf_sim = sens_hf[1] * p_ls_sim + (1 - spec_hf[1]) * (1 - 

p_ls_sim); 

  vector[N_ls] p_ls_mn_sim = sens_mn[1] * p_ls_sim + (1 - spec_mn[1]) * (1 - 

p_ls_sim); 

   

// simulate sample observations 

  y_hw_hf_sim = binomial_rng(1, p_hw_hf_sim); 

  y_hw_mn_sim = binomial_rng(1, p_hw_mn_sim); 

  y_ds_hf_sim = binomial_rng(1, p_ds_hf_sim); 

  y_ds_mn_sim = binomial_rng(1, p_ds_mn_sim); 

  y_ls_hf_sim = binomial_rng(1, p_ls_hf_sim); 

  y_ls_mn_sim = binomial_rng(1, p_ls_mn_sim); 

   

// summarize simulated samples 

  n_pos_hw_hf = sum(y_hw_hf_sim); 

  n_pos_hw_mn = sum(y_hw_mn_sim); 

  n_pos_ds_hf = sum(y_ds_hf_sim); 

  n_pos_ds_mn = sum(y_ds_mn_sim); 

  n_pos_ls_hf = sum(y_ls_hf_sim); 

  n_pos_ls_mn = sum(y_ls_mn_sim); 

   

// mean prevalence predictions 
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  p_avg_comp = mean(p_comp_sim); 

  p_avg_hw = mean(p_hw_sim); 

  p_avg_ds = mean(p_ds_sim); 

  p_avg_ls = mean(p_ls_sim); 

  p_samp_avg_hw_hf = mean(p_hw_hf_sim); 

  p_samp_avg_hw_mn = mean(p_hw_mn_sim); 

  p_samp_avg_ds_hf = mean(p_ds_hf_sim); 

  p_samp_avg_ds_mn = mean(p_ds_mn_sim); 

  p_samp_avg_ls_hf = mean(p_ls_hf_sim); 

  p_samp_avg_ls_mn = mean(p_ls_mn_sim); 

} 
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